Skip to content

Implement TLS Matcher Quality and Confidence Scoring #119

@biandratti

Description

@biandratti

Objective

Implement quality scoring system for TLS fingerprint matching to provide confidence levels in device/application identification.

Requirements

  • Exact match scoring (100% confidence)
  • Partial match algorithms
  • Fuzzy matching for similar fingerprints
  • Age-based quality degradation
  • Statistical confidence calculations
  • Match quality metrics

Matching Algorithms

pub enum MatchQuality {
    Exact(f64),           // 1.0 = perfect match
    Partial(f64),         // 0.7-0.99 = good match  
    Fuzzy(f64),          // 0.5-0.69 = possible match
    NoMatch,             // < 0.5 = no reliable match
}

pub struct TlsMatchResult {
    pub device: String,
    pub confidence: f64,
    pub quality: MatchQuality,
    pub match_reason: String,
}

Quality Factors

  • JA4 hash exact match
  • Cipher suite similarity
  • Extension pattern matching
  • TLS version compatibility
  • Database entry freshness
  • Historical accuracy

Acceptance Criteria

  • Quality scoring algorithm implemented
  • Confidence thresholds configurable
  • Match explanations provided
  • Comprehensive test coverage

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions