Skip to content

Commit d1583f3

Browse files
committed
Delete MAP prediction
1 parent 3b52aa3 commit d1583f3

File tree

1 file changed

+0
-17
lines changed

1 file changed

+0
-17
lines changed

bayesml/metatree/__init__.py

Lines changed: 0 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -103,23 +103,6 @@
103103
\qquad + g_{n,s} \mathbb{E}_{\tilde{q}_{s_{\mathrm{child}}}(y_{n+1} | \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n, M_{T_b, \boldsymbol{k}_b})} [Y_{n+1} | \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n, \boldsymbol{k}_b] ,& ({\rm otherwise}).
104104
\end{cases}
105105
106-
The maximum value of the predictive distribution can be calculated as follows.
107-
108-
.. math::
109-
\max_{y_{n+1}} p(y_{n+1}| \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n) = \max_{b = 1, \dots , B} \left\{ p(\boldsymbol{k}_b | \boldsymbol{x}^n, y^n) \max_{y_{n+1}} \tilde{q}_{s_{\lambda}}(y_{n+1}|\boldsymbol{x}_{n+1},\boldsymbol{x}^n, y^n, M_{T_b, \boldsymbol{k}_b}) \right\},
110-
111-
where the maximum value of :math:`\tilde{q}` is recursively given as follows.
112-
113-
.. math::
114-
&\max_{y_{n+1}} \tilde{q}_s(y_{n+1} | \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n, M_{T_b, \boldsymbol{k}_b}) \\
115-
&= \begin{cases}
116-
\max_{y_{n+1}} q_s(y_{n+1} | \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n, \boldsymbol{k}_b),& (s \ {\rm is \ the \ leaf \ node \ of} \ M_{T_b, \boldsymbol{k}_b}),\\
117-
\max \{ (1-g_{n,s}) \max_{y_{n+1}} q_s(y_{n+1} | \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n, \boldsymbol{k}_b), \\
118-
\qquad \qquad g_{n,s} \max_{y_{n+1}} \tilde{q}_{s_{\mathrm{child}}}(y_{n+1} | \boldsymbol{x}_{n+1}, \boldsymbol{x}^n, y^n, M_{T_b, \boldsymbol{k}_b}) \} ,& ({\rm otherwise}).
119-
\end{cases}
120-
121-
The mode of the predictive distribution can be also calculated by using the above equation.
122-
123106
References
124107
125108
* Dobashi, N.; Saito, S.; Nakahara, Y.; Matsushima, T. Meta-Tree Random Forest: Probabilistic Data-Generative Model and Bayes Optimal Prediction. *Entropy* 2021, 23, 768. https://doi.org/10.3390/e23060768

0 commit comments

Comments
 (0)