@@ -414,7 +414,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
414
414
xxx : float or numpy.ndarray, optional
415
415
Real numbers,
416
416
by default [0.0, 0.0, ... , 0.0]
417
- If a single scaler is input, it will be broadcasted.
417
+ If a single real number is input, it will be broadcasted.
418
418
```
419
419
420
420
#### 非負の実数の組
@@ -423,7 +423,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
423
423
xxx : float or numpy.ndarray, optional
424
424
Non-negative real numbers,
425
425
by default [1.0, 1.0, ... , 1.0]
426
- If a single scaler is input, it will be broadcasted.
426
+ If a single real number is input, it will be broadcasted.
427
427
```
428
428
429
429
#### 正の実数の組
@@ -518,7 +518,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
518
518
```
519
519
xxx : numpy.ndarray, optional
520
520
Vectors of real numbers,
521
- by default zero vectors.
521
+ by default zero vectors
522
522
If a single vector is input, will be broadcasted.
523
523
```
524
524
@@ -527,7 +527,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
527
527
```
528
528
xxx : numpy.ndarray, optional
529
529
Vectors of non-negative numbers,
530
- by default vectors whose elements are all 1.
530
+ by default vectors whose elements are all 1.0
531
531
If a single vector is input, will be broadcasted.
532
532
```
533
533
@@ -536,7 +536,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
536
536
```
537
537
xxx : numpy.ndarray, optional
538
538
Vectors of positive numbers,
539
- by default vectors whose elements are all 1.
539
+ by default vectors whose elements are all 1.0
540
540
If a single vector is input, will be broadcasted.
541
541
```
542
542
@@ -546,7 +546,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
546
546
xxx : numpy.ndarray, optional
547
547
Vectors of real numbers in :math:`[0, 1]`,
548
548
by default vectors such as [1/yyy, 1/yyy, ... , 1/yyy]
549
- Sum of the elements of each vector must be 1.
549
+ Sum of the elements of each vector must be 1.0.
550
550
If a single vector is input, will be broadcasted.
551
551
```
552
552
@@ -566,7 +566,7 @@ class LearnModel(base.Posterior,base.PredictiveMixin):
566
566
xxx : numpy.ndarray, optional
567
567
A matrix of real numbers in :math:`[0, 1]`,
568
568
by default a matrix obtained by stacking [1/yyy, 1/yyy, ... , 1/yyy]
569
- Sum of the elements of each row vector must be 1.
569
+ Sum of the elements of each row vector must be 1.0.
570
570
If a single vector is input, will be broadcasted.
571
571
```
572
572
0 commit comments