You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* :math:`D_\mathrm{max} \in \mathbb{N}` : the maximum depth of context tree models
9
+
* :math:`T` : a context tree model, :math:`K`-ary regular tree whose depth is smaller than or equal to :math:`D_\mathrm{max}`, where "regular" means that all inner nodes have :math:`K` child nodes
10
+
* :math:`\mathcal{T}` : a set of :math:`T`
11
+
* :math:`s` : a node of a context tree model
12
+
* :math:`\mathcal{I}(T)` : a set of inner nodes of :math:`T`
13
+
* :math:`\mathcal{L}(T)` : a set of leaf nodes of :math:`T`
14
+
* :math:`\mathcal{S}(T)` : a set of all nodes of :math:`T`, i.e., :math:`\mathcal{S}(T) = \mathcal{I}(T) \cup \mathcal{L}(T)`
15
+
* :math:`s_T(x^{n-1}) \in \mathcal{L}(T)` : a leaf node of :math:`T` corresponding to :math:`x^{n-1} = x_1 x_2\cdots x_{n-1}`
16
+
* :math:`\boldsymbol{\theta}_s = (\theta_{1|s}, \theta_{2|s}, \ldots, \theta_{K|s})` : a parameter on a leaf node, where :math:`\theta_{k|s}` denotes the occurrence probability of :math:`k\in\mathcal{X}`
where the updating rule of the hyperparameter is as follows:
55
+
56
+
.. math::
57
+
\beta_n(k|s) = \beta_0(k|s) + \sum_{i=1}^n I \left\{ \text{:math:`s` is the ancestor of :math:`s_{T_\mathrm{max}}(x^{i-1})` and :math:`x_i=k` } \right\}.
* :math:`\boldsymbol{\theta}_\mathrm{p} = (\theta_{\mathrm{p},1}, \theta_{\mathrm{p},2}, \ldots, \theta_{\mathrm{p},K})` : a parameter of the predictive distribution, where :math:`\theta_{\mathrm{p},k}` denotes the occurrence probability of :math:`k\in\mathcal{X}`.
92
+
93
+
.. math::
94
+
p(x_n|x^{n-1}) = \theta_{\mathrm{p},x_n},
95
+
96
+
where the updating rule of the parameters of the pridictive distribution is as follows.
* Matsushima, T.; and Hirasawa, S. Reducing the space complexity of a Bayes coding algorithm using an expanded context tree, *2009 IEEE International Symposium on Information Theory*, 2009, pp. 719-723, https://doi.org/10.1109/ISIT.2009.5205677
104
+
* Nakahara, Y.; Saito, S.; Kamatsuka, A.; Matsushima, T. Probability Distribution on Full Rooted Trees. *Entropy* 2022, 24, 328. https://doi.org/10.3390/e24030328
0 commit comments