Skip to content

Commit c2f457c

Browse files
Merge pull request #87 from bayesml/main-hotfix
Update README and web page
2 parents bd15c49 + 69e2542 commit c2f457c

File tree

7 files changed

+109
-88
lines changed

7 files changed

+109
-88
lines changed

README.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,10 +3,15 @@ Document Author
33
Yuta Nakahara <yuta.nakahara@aoni.waseda.jp>
44
Shota Saito <shota.s@gunma-u.ac.jp>
55
-->
6+
7+
---
8+
69
<div align="center">
710
<b>Our algorithm for the meta-tree model is accepted at AISTATS 2025! Click <a href="https://bayesml.github.io/BayesML/examples/metatree_prediction_interval.html">here</a>!</b>
811
</div>
912

13+
---
14+
1015
<img src="./doc/logos/BayesML_logo.png" width="600">
1116

1217
## Purpose

README_jp.md

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2,10 +2,15 @@
22
Document Author
33
Yuta Nakahara <yuta.nakahara@aoni.waseda.jp>
44
-->
5+
6+
---
7+
58
<div align="center">
69
<b>メタツリーモデルに対するアルゴリズムがAISTATS 2025に採択!詳細は<a href="https://bayesml.github.io/BayesML/examples/metatree_prediction_interval.html">こちら</a>!</b>
710
</div>
811

12+
---
13+
914
<img src="./doc/logos/BayesML_logo.png" width="600">
1015

1116
## 目的

doc/examples/metatree_prediction_interval.ipynb

Lines changed: 25 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -11,13 +11,16 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14-
"### Installation of BayesML\n",
15-
"\n",
16-
"Installation from PyPI will be available soon. Until then, please follow these steps:\n",
17-
"\n",
18-
"1. Clone BayesML from https://github.com/bayesml/BayesML.\n",
19-
"2. Change the directory and move to the root of the cloned BayesML folder where setup.py exists. (e.g., /Users/UserName/Documents/GitHub/BayesML)\n",
20-
"3. Run `pip install .`"
14+
"### Installation of BayesML"
15+
]
16+
},
17+
{
18+
"cell_type": "code",
19+
"execution_count": 1,
20+
"metadata": {},
21+
"outputs": [],
22+
"source": [
23+
"!pip install bayesml"
2124
]
2225
},
2326
{
@@ -29,7 +32,7 @@
2932
},
3033
{
3134
"cell_type": "code",
32-
"execution_count": 1,
35+
"execution_count": 2,
3336
"metadata": {},
3437
"outputs": [
3538
{
@@ -163,7 +166,7 @@
163166
"4 -0.002592 -0.031988 -0.046641 135.0 1.0 "
164167
]
165168
},
166-
"execution_count": 1,
169+
"execution_count": 2,
167170
"metadata": {},
168171
"output_type": "execute_result"
169172
}
@@ -186,7 +189,7 @@
186189
},
187190
{
188191
"cell_type": "code",
189-
"execution_count": 2,
192+
"execution_count": 3,
190193
"metadata": {},
191194
"outputs": [],
192195
"source": [
@@ -223,7 +226,7 @@
223226
},
224227
{
225228
"cell_type": "code",
226-
"execution_count": 3,
229+
"execution_count": 4,
227230
"metadata": {},
228231
"outputs": [],
229232
"source": [
@@ -252,7 +255,7 @@
252255
},
253256
{
254257
"cell_type": "code",
255-
"execution_count": 4,
258+
"execution_count": 5,
256259
"metadata": {},
257260
"outputs": [],
258261
"source": [
@@ -284,7 +287,7 @@
284287
},
285288
{
286289
"cell_type": "code",
287-
"execution_count": 5,
290+
"execution_count": 6,
288291
"metadata": {},
289292
"outputs": [
290293
{
@@ -303,7 +306,7 @@
303306
"<bayesml.metatree._metatree.LearnModel at 0x14f49d0d0>"
304307
]
305308
},
306-
"execution_count": 5,
309+
"execution_count": 6,
307310
"metadata": {},
308311
"output_type": "execute_result"
309312
}
@@ -334,7 +337,7 @@
334337
},
335338
{
336339
"cell_type": "code",
337-
"execution_count": 6,
340+
"execution_count": 7,
338341
"metadata": {},
339342
"outputs": [],
340343
"source": [
@@ -373,7 +376,7 @@
373376
},
374377
{
375378
"cell_type": "code",
376-
"execution_count": 7,
379+
"execution_count": 8,
377380
"metadata": {},
378381
"outputs": [
379382
{
@@ -408,7 +411,7 @@
408411
},
409412
{
410413
"cell_type": "code",
411-
"execution_count": 8,
414+
"execution_count": 9,
412415
"metadata": {},
413416
"outputs": [],
414417
"source": [
@@ -441,7 +444,7 @@
441444
},
442445
{
443446
"cell_type": "code",
444-
"execution_count": 9,
447+
"execution_count": 10,
445448
"metadata": {},
446449
"outputs": [
447450
{
@@ -469,7 +472,7 @@
469472
},
470473
{
471474
"cell_type": "code",
472-
"execution_count": 10,
475+
"execution_count": 11,
473476
"metadata": {},
474477
"outputs": [
475478
{
@@ -478,7 +481,7 @@
478481
"<bayesml.metatree._metatree.GenModel at 0x16b81c610>"
479482
]
480483
},
481-
"execution_count": 10,
484+
"execution_count": 11,
482485
"metadata": {},
483486
"output_type": "execute_result"
484487
}
@@ -509,7 +512,7 @@
509512
},
510513
{
511514
"cell_type": "code",
512-
"execution_count": 11,
515+
"execution_count": 12,
513516
"metadata": {},
514517
"outputs": [
515518
{
@@ -542,7 +545,7 @@
542545
},
543546
{
544547
"cell_type": "code",
545-
"execution_count": 12,
548+
"execution_count": 13,
546549
"metadata": {},
547550
"outputs": [
548551
{

docs/_sources/examples/metatree_prediction_interval.ipynb

Lines changed: 25 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -11,13 +11,16 @@
1111
"cell_type": "markdown",
1212
"metadata": {},
1313
"source": [
14-
"### Installation of BayesML\n",
15-
"\n",
16-
"Installation from PyPI will be available soon. Until then, please follow these steps:\n",
17-
"\n",
18-
"1. Clone BayesML from https://github.com/bayesml/BayesML.\n",
19-
"2. Change the directory and move to the root of the cloned BayesML folder where setup.py exists. (e.g., /Users/UserName/Documents/GitHub/BayesML)\n",
20-
"3. Run `pip install .`"
14+
"### Installation of BayesML"
15+
]
16+
},
17+
{
18+
"cell_type": "code",
19+
"execution_count": 1,
20+
"metadata": {},
21+
"outputs": [],
22+
"source": [
23+
"!pip install bayesml"
2124
]
2225
},
2326
{
@@ -29,7 +32,7 @@
2932
},
3033
{
3134
"cell_type": "code",
32-
"execution_count": 1,
35+
"execution_count": 2,
3336
"metadata": {},
3437
"outputs": [
3538
{
@@ -163,7 +166,7 @@
163166
"4 -0.002592 -0.031988 -0.046641 135.0 1.0 "
164167
]
165168
},
166-
"execution_count": 1,
169+
"execution_count": 2,
167170
"metadata": {},
168171
"output_type": "execute_result"
169172
}
@@ -186,7 +189,7 @@
186189
},
187190
{
188191
"cell_type": "code",
189-
"execution_count": 2,
192+
"execution_count": 3,
190193
"metadata": {},
191194
"outputs": [],
192195
"source": [
@@ -223,7 +226,7 @@
223226
},
224227
{
225228
"cell_type": "code",
226-
"execution_count": 3,
229+
"execution_count": 4,
227230
"metadata": {},
228231
"outputs": [],
229232
"source": [
@@ -252,7 +255,7 @@
252255
},
253256
{
254257
"cell_type": "code",
255-
"execution_count": 4,
258+
"execution_count": 5,
256259
"metadata": {},
257260
"outputs": [],
258261
"source": [
@@ -284,7 +287,7 @@
284287
},
285288
{
286289
"cell_type": "code",
287-
"execution_count": 5,
290+
"execution_count": 6,
288291
"metadata": {},
289292
"outputs": [
290293
{
@@ -303,7 +306,7 @@
303306
"<bayesml.metatree._metatree.LearnModel at 0x14f49d0d0>"
304307
]
305308
},
306-
"execution_count": 5,
309+
"execution_count": 6,
307310
"metadata": {},
308311
"output_type": "execute_result"
309312
}
@@ -334,7 +337,7 @@
334337
},
335338
{
336339
"cell_type": "code",
337-
"execution_count": 6,
340+
"execution_count": 7,
338341
"metadata": {},
339342
"outputs": [],
340343
"source": [
@@ -373,7 +376,7 @@
373376
},
374377
{
375378
"cell_type": "code",
376-
"execution_count": 7,
379+
"execution_count": 8,
377380
"metadata": {},
378381
"outputs": [
379382
{
@@ -408,7 +411,7 @@
408411
},
409412
{
410413
"cell_type": "code",
411-
"execution_count": 8,
414+
"execution_count": 9,
412415
"metadata": {},
413416
"outputs": [],
414417
"source": [
@@ -441,7 +444,7 @@
441444
},
442445
{
443446
"cell_type": "code",
444-
"execution_count": 9,
447+
"execution_count": 10,
445448
"metadata": {},
446449
"outputs": [
447450
{
@@ -469,7 +472,7 @@
469472
},
470473
{
471474
"cell_type": "code",
472-
"execution_count": 10,
475+
"execution_count": 11,
473476
"metadata": {},
474477
"outputs": [
475478
{
@@ -478,7 +481,7 @@
478481
"<bayesml.metatree._metatree.GenModel at 0x16b81c610>"
479482
]
480483
},
481-
"execution_count": 10,
484+
"execution_count": 11,
482485
"metadata": {},
483486
"output_type": "execute_result"
484487
}
@@ -509,7 +512,7 @@
509512
},
510513
{
511514
"cell_type": "code",
512-
"execution_count": 11,
515+
"execution_count": 12,
513516
"metadata": {},
514517
"outputs": [
515518
{
@@ -542,7 +545,7 @@
542545
},
543546
{
544547
"cell_type": "code",
545-
"execution_count": 12,
548+
"execution_count": 13,
546549
"metadata": {},
547550
"outputs": [
548551
{

0 commit comments

Comments
 (0)