Skip to content

Commit 76667f1

Browse files
committed
Update hiddenmarkovnormal.md
1 parent 5191554 commit 76667f1

File tree

1 file changed

+17
-0
lines changed

1 file changed

+17
-0
lines changed

bayesml/hiddenmarkovnormal/hiddenmarkovnormal.md

Lines changed: 17 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -95,6 +95,22 @@ $$
9595
\end{align}
9696
$$
9797

98+
The forward-backward algorithm is used to calculate the approximate posterior distribution of the latent variable.
99+
100+
$$
101+
q(z_n)^{(t)} = \frac{1}{\sum_{\bm{z}_{N+1}}\alpha(\bm{z}_{N+1})^{(t)}}\alpha(\bm{z}_n)^{(t)}\beta(\bm{z}_n)^{(t)}
102+
$$
103+
104+
where
105+
106+
$$
107+
\begin{cases}
108+
\alpha(\bm{z}_n)^{(t)}&=\prod_{k=1}^{K} \{\rho_{\text{out},n,k}^{(t)}\}^{z_{1,k}}\sum_{\bm{z}_{n-1}}\left[\prod_{k=1}^{K}\prod_{j=1}^{K}\{\rho^{(t)}_{\text{trans},j,k}\}^{z_{n-1,j}z_{n,k}}\right]\alpha(\bm{z}_{n-1})^{(t)}\\
109+
\alpha(\bm{z}_1)^{(t)}&=\prod_{k=1}^{K}\left\{\rho_{\text{init},k}^{(t)}\rho_{\text{out},1,k}^{(t)}\right\}^{z_{1,k}}\\
110+
\beta(\bm{z}_n)^{(t)}&=\sum_{\bm{z}_{t+1}}\left[\prod_{k=1}^{K} \{\rho_{\text{out},n+1,k}^{(t)}\}^{z_{n+1,k}}\sum_{\bm{z}_{n+1}}\left[\prod_{k=1}^{K}\prod_{j=1}^{K}\{\rho^{(t)}_{\text{trans},j,k}\}^{z_{n,j}z_{n+1,k}}\right]\beta(\bm{z}_{n+1})^{(t)}\right]
111+
\end{cases}
112+
$$
113+
98114
The approximate predictive distribution is as follows:
99115

100116
* $\boldsymbol{x}_{n+1} \in \mathbb{R}^D$: a new data point
@@ -121,3 +137,4 @@ $$
121137
\nu_{\mathrm{p},k} &= \nu_{n,k}^{(t)} - D + 1.
122138
\end{align}
123139
$$
140+

0 commit comments

Comments
 (0)