@@ -9,7 +9,8 @@ The stochastic data generative model is as follows:
9
9
* $K \in \mathbb{N}$: number of latent classes
10
10
* $\boldsymbol{z} \in \{ 0, 1 \} ^K$: a one-hot vector representing the latent class (latent variable)
11
11
* $\boldsymbol{\pi} \in [ 0, 1] ^K$: a parameter for latent classes, ($\sum_ {k=1}^K \pi_k=1$)
12
- * $\boldsymbol{A}=(a_ {k'k})_ {0\leq k',k\leq K} \in [ 0, 1] ^{K\times K}$: a parameter for latent classes, ($\sum_ {k=1}^K a_ {k'k}=1$)
12
+ * $a_ {jk}$ : transition probability to latent state k under latent state j
13
+ * $\boldsymbol{A}=(a_ {jk})_ {0\leq j,k\leq K} \in [ 0, 1] ^{K\times K}$: a parameter for latent classes, ($\sum_ {k=1}^K a_ {jk}=1$)
13
14
* $D \in \mathbb{N}$: a dimension of data
14
15
* $\boldsymbol{x} \in \mathbb{R}^D$: a data point
15
16
* $\boldsymbol{\mu}_ k \in \mathbb{R}^D$: a parameter
@@ -21,7 +22,7 @@ The stochastic data generative model is as follows:
21
22
$$
22
23
\begin{align}
23
24
p(\boldsymbol{z}_{1} | \boldsymbol{\pi}) &= \mathrm{Cat}(\boldsymbol{z}_{1}|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_{1,k}},\\
24
- p(\boldsymbol{z}_{n} |\boldsymbol{z}_{n-1} ,\boldsymbol{A}) &= \prod_{k=1}^K \prod_{k' =1}^K a_{k'k }^{z_{n-1,k' }z_{n,k}},\\
25
+ p(\boldsymbol{z}_{n} |\boldsymbol{z}_{n-1} ,\boldsymbol{A}) &= \prod_{k=1}^K \prod_{j =1}^K a_{jk }^{z_{n-1,j }z_{n,k}},\\
25
26
p(\boldsymbol{x}_{n} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{z}_{n}) &= \prod_{k=1}^K \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Lambda}_k^{-1})^{z_{n,k}} \\
26
27
&= \prod_{k=1}^K \left( \frac{| \boldsymbol{\Lambda}_{k} |^{1/2}}{(2\pi)^{D/2}} \exp \left\{ -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_{k})^\top \boldsymbol{\Lambda}_{k} (\boldsymbol{x}-\boldsymbol{\mu}_{k}) \right\} \right)^{z_{n,k}},
27
28
\end{align}
@@ -34,17 +35,17 @@ The prior distribution is as follows:
34
35
* $\nu_0 \in \mathbb{R}$: a hyperparameter ($\nu_0 > D-1$)
35
36
* $\boldsymbol{W}_ 0 \in \mathbb{R}^{D\times D}$: a hyperparameter (a positive definite matrix)
36
37
* $\boldsymbol{\eta}_ 0 \in \mathbb{R}_ {> 0}^K$: a hyperparameter
37
- * $\boldsymbol{\zeta}_ {0,k' } \in \mathbb{R}_ {> 0}^K$: a hyperparameter
38
+ * $\boldsymbol{\zeta}_ {0,j } \in \mathbb{R}_ {> 0}^K$: a hyperparameter
38
39
* $\mathrm{Tr} \{ \cdot \} $: a trace of a matrix
39
40
* $\Gamma (\cdot)$: the gamma function
40
41
41
42
$$
42
43
\begin{align}
43
- p(\boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi}) &= \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_0,(\kappa_0 \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_0, \nu_0) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_0) \prod_{k' =1}^{K}\mathrm{Dir}(\boldsymbol{a}_{k' }|\boldsymbol{\zeta}_{0,k' }), \\
44
+ p(\boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi},\boldsymbol{A} ) &= \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_0,(\kappa_0 \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_0, \nu_0) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\eta}_0) \prod_{j =1}^{K}\mathrm{Dir}(\boldsymbol{a}_{j }|\boldsymbol{\zeta}_{0,j }), \\
44
45
&= \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_0}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_0}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_0)^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_0) \right\} \\
45
- &\qquad \times B(\boldsymbol{W}_0, \nu_0) | \boldsymbol{\Lambda}_k |^{(\nu_0 - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ \boldsymbol{W}_0^{-1} \boldsymbol{\Lambda}_k \} \right\} \Biggr] \ \
46
- &\qquad \times C(\boldsymbol{\eta}_0)\prod_{k=1}^K \ pi_k^{\eta_{0,k}-1}\\
47
- &\qquad \times \prod_{k' =1}^KC(\boldsymbol{\zeta}_{0,k'})\prod_{k=1}^K a_{k'k }^{\zeta_{0,k' ,k}-1},\\
46
+ &\qquad \times B(\boldsymbol{W}_0, \nu_0) | \boldsymbol{\Lambda}_k |^{(\nu_0 - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ \boldsymbol{W}_0^{-1} \boldsymbol{\Lambda}_k \} \right\} \\
47
+ &\qquad \times C(\boldsymbol{\eta}_0)\pi_k^{\eta_{0,k}-1}\\
48
+ &\qquad \times \prod_{j =1}^KC(\boldsymbol{\zeta}_{0,j}) a_{jk }^{\zeta_{0,j ,k}-1}\Biggr] ,\\
48
49
\end{align}
49
50
$$
50
51
54
55
\begin{align}
55
56
B(\boldsymbol{W}_0, \nu_0) &= | \boldsymbol{W}_0 |^{-\nu_0 / 2} \left( 2^{\nu_0 D / 2} \pi^{D(D-1)/4} \prod_{i=1}^D \Gamma \left( \frac{\nu_0 + 1 - i}{2} \right) \right)^{-1}, \\
56
57
C(\boldsymbol{\eta}_0) &= \frac{\Gamma(\sum_{k=1}^K \eta_{0,k})}{\Gamma(\eta_{0,1})\cdots\Gamma(\eta_{0,K})},\\
57
- C(\boldsymbol{\zeta}_{0,k' }) &= \frac{\Gamma(\sum_{k=1}^K \zeta_{0,k' ,k})}{\Gamma(\zeta_{0,k' ,1})\cdots\Gamma(\zeta_{0,k' ,K})}.
58
+ C(\boldsymbol{\zeta}_{0,j }) &= \frac{\Gamma(\sum_{k=1}^K \zeta_{0,j ,k})}{\Gamma(\zeta_{0,j ,1})\cdots\Gamma(\zeta_{0,j ,K})}.
58
59
\end{align}
59
60
$$
60
61
<!--
0 commit comments