Skip to content

Commit 2e43118

Browse files
committed
Prepare for packaging
1 parent 6cfdbc8 commit 2e43118

File tree

11 files changed

+99
-129
lines changed

11 files changed

+99
-129
lines changed

MANIFEST.in

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,2 @@
1+
include LICENSE.txt
2+
include *.md

bayesml/__init__.py

Lines changed: 16 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,16 @@
1+
from . import bernoulli
2+
from . import autoregressive
3+
from . import exponential
4+
from . import linearregression
5+
from . import multivariate_normal
6+
from . import normal
7+
from . import poisson
8+
9+
__all__ = ['bernoulli',
10+
'autoregressive',
11+
'exponential',
12+
'linearregression',
13+
'multivariate_normal',
14+
'normal',
15+
'poisson'
16+
]

bayesml/_check.py

Lines changed: 0 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,6 @@
22
# Yuta Nakahara <yuta.nakahara@aoni.waseda.jp>
33
# Yuji Iikubo <yuji-iikubo.8@fuji.waseda.jp>
44
import numpy as np
5-
from ._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
65

76
FLOATS = list({'float128','float64','float32','float16'} & set(dir(np)) | {float})
87
INTS = list({'int64','int32','int16','int8'} & set(dir(np)) | {int})
@@ -157,6 +156,3 @@ def float_vecs(val,val_name,exception_class):
157156
return val
158157
raise(exception_class(val_name + " must be a numpy.ndarray whose ndim >= 1."))
159158

160-
if __name__ == '__main__':
161-
a = np.ones([1,1,2])
162-
print(pos_floats(np.ones([3,4])*(1.0e-8),'tmp',DataFormatError))

bayesml/autoregressive/_autoregressive.py

Lines changed: 3 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -9,17 +9,9 @@
99
from scipy.stats import t as ss_t
1010
import matplotlib.pyplot as plt
1111

12-
import os
13-
import sys
14-
sys.path.insert(0, os.path.abspath('.'))
15-
16-
from bayesml import base
17-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
18-
from bayesml import _check
19-
20-
# from .. import base
21-
# from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
22-
# from .. import _check
12+
from .. import base
13+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
14+
from .. import _check
2315

2416
class GenModel(base.Generative):
2517
"""The stochastic data generative model and the prior distribution.

bayesml/bernoulli/_bernoulli.py

Lines changed: 3 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -10,17 +10,9 @@
1010
# from scipy.stats import betabino as ss_betabinom
1111
import matplotlib.pyplot as plt
1212

13-
import os
14-
import sys
15-
sys.path.insert(0, os.path.abspath('.'))
16-
17-
from bayesml import base
18-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
19-
from bayesml import _check
20-
21-
# from .. import base
22-
# from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
23-
# from .. import _check
13+
from .. import base
14+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
15+
from .. import _check
2416

2517
class GenModel(base.Generative):
2618
"""The stochastic data generative model and the prior distribution.

bayesml/exponential/_exponential.py

Lines changed: 3 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -10,20 +10,11 @@
1010
import warnings
1111
import numpy as np
1212
from scipy.stats import expon as ss_expon, gamma as ss_gamma, lomax as ss_lomax
13-
# from scipy.stats import betabino as ss_betabinom
1413
import matplotlib.pyplot as plt
1514

16-
import os
17-
import sys
18-
sys.path.insert(0, os.path.abspath('.'))
19-
20-
from bayesml import base
21-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
22-
from bayesml import _check
23-
24-
# from .. import base
25-
# from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
26-
# from .. import _check
15+
from .. import base
16+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
17+
from .. import _check
2718

2819
class GenModel(base.Generative):
2920
"""The stochastic data generative model and the prior distribution.

bayesml/linearregression/_linearregression.py

Lines changed: 3 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -11,16 +11,9 @@
1111
from scipy.stats import t as ss_t
1212
import matplotlib.pyplot as plt
1313

14-
import os
15-
import sys
16-
sys.path.insert(0, os.path.abspath('.'))
17-
from bayesml import base
18-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
19-
from bayesml import _check
20-
21-
# from .. import base
22-
# from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
23-
# from .. import _check
14+
from .. import base
15+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
16+
from .. import _check
2417

2518
class GenModel(base.Generative):
2619
"""The stochastic data generative model and the prior distribution.

bayesml/multivariate_normal/_multivariatenormal.py

Lines changed: 3 additions & 62 deletions
Original file line numberDiff line numberDiff line change
@@ -6,75 +6,16 @@
66
# Keito Tajima <wool812@akane.waseda.jp>
77
# Naoki Ichijo <1jonao@fuji.waseda.jp>
88
# Yuta Nakahara <yuta.nakahara@aoni.waseda.jp>
9-
r"""
10-
The multivariate normal distribution with normal-wishart prior distribution.
11-
12-
The stochastic data generative model is as follows:
13-
14-
* :math:`x \in \mathbb{R}^degree`: a data point
15-
* :math:`\bm{\mu} \in \mathbb{R}^degree`: a parameter
16-
* :math:`\Sigma \in \mathbb{R}^{degree\times degree}` : a parameter
17-
18-
.. math:: \mathcal{N}(\bm{x}|\bm{\mu},\Sigma) = \frac{1}{(2\pi)^{\frac{degree}{2}}|\Sigma|^{\frac{1}{2}}}e^{-\frac{1}{2}(\bm{x}-\bm{\mu})\Sigma^{-1}(\bm{x}-\bm{\mu})^\top}
19-
20-
The prior distribution is as follows:
21-
22-
* :math:`\bm{\mu}_0 \in \mathbb{R}^{degree}`: a hyperparameter
23-
* :math:`\kappa_0 \in \mathbb{R}_{>0}`: a hyperparameter
24-
* :math:`\nu_0 \in \mathbb{R}_{>degree-1}`: a hyperparameter
25-
* :math:`V_0 \in \mathbb{R}^{degree\times degree}`: a hyperparameter
26-
27-
.. math:: f(\bm{\mu},\Lambda|\bm{\mu}_0,\kappa_0,\V_0,\nu_0) = mathcal{N}(\bm{\mu}|\bm{\mu}_0,(\lambda_0\Lambda)^{-1})\mathcal{W}(\Lambda|V_0,\nu_0)
28-
29-
The posterior distribution is as follows:
30-
31-
* :math:`\bm{x}^n = (\bm{x}_1, \bm{x}_2, \dots , \bm{x}_n) \in \mathbb{R}^{degree\times n}`: given data
32-
* :math:`\bm{\mu}_n \in \mathbb{R}^{degree}`: a hyperparameter
33-
* :math:`\kappa_n \in \mathbb{R}_{>0}`: a hyperparameter
34-
* :math:`\nu_n \in \mathbb{R}_{>degree-1}`: a hyperparameter
35-
* :math:`V_n \in \mathbb{R}^{degree\times degree}`: a hyperparameter
36-
37-
.. math:: f(\bm{\mu},\Lambda|\bm{\mu}_n,\kappa_n,V_n,\nu_n) = \mathcal{N}(\bm{\mu}|\bm{\mu}_n,(\lambda_n\Lambda)^{-1})\mathcal{W}(\Lambda|V_n,\nu_n)
38-
39-
where the updating rule of the hyperparameters is
40-
41-
.. math::
42-
\bm{\mu}_n=\frac{\kappa_0\bm{\mu}+n\bar{\bm{x}}}{\kappa_0+n}\\
43-
\kappa_n=\kappa_0+n\\
44-
V_n=\left(V_0^{-1}+C+\frac{\kappa_0 n}{\kappa_0+n}(\bar{\bm{x}}-\bm{\mu}_0)(\bar{\bm{x}}-\bm{\mu}_0)^\top\right)^{-1}\\
45-
\nu_n=\nu_0+n\\
46-
C=\sum_{i=1}^{n}(\bm{x}_i-\bar{\bm{x}})(\bm{x}_i-\bar{\bm{x}})^\top
47-
48-
The predictive distribution is as follows:
49-
50-
* :math:`x \in \mathbb{R}`: a new data point
51-
* :math:`\bm{\mu}_p`: the hyperparameter of the posterior
52-
* :math:`\kappa_p`: the hyperparameter of the posterior
53-
* :math:`V_p`: the hyperparameter of the posterior
54-
* :math:`\nu_p`: the hyperparameter of the posterior
55-
56-
.. math::
57-
p(x|\bm{\mu}_p,\kappa_p,V_p,\nu_p) = t_{\nu_p-degree+1}\left(\bm{\mu}_p,\frac{\kappa_p+1}{\kappa_p(\nu_p-degree+1)}V_p^{-1}\right)
58-
"""
599
import warnings
6010
import numpy as np
6111
from scipy.stats import multivariate_normal as ss_multivariate_normal
6212
from scipy.stats import wishart as ss_wishart
6313
from scipy.stats import multivariate_t as ss_multivariate_t
6414
import matplotlib.pyplot as plt
6515

66-
# from .. import base
67-
# from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
68-
# from .. import _check
69-
70-
import matplotlib.pyplot as plt
71-
import os
72-
import sys
73-
sys.path.insert(0, os.path.abspath('.'))
74-
75-
from bayesml import base
76-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
77-
from bayesml import _check
16+
from .. import base
17+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
18+
from .. import _check
7819

7920
class GenModel(base.Generative):
8021
"""The stochastic data generative model and the prior distribution

bayesml/normal/_normal.py

Lines changed: 3 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -11,15 +11,11 @@
1111
from scipy.stats import norm as ss_norm
1212
from scipy.stats import gamma as ss_gamma
1313
from scipy.stats import t as ss_t
14-
# from scipy.stats import betabino as ss_betabinom
1514
import matplotlib.pyplot as plt
16-
import os
17-
import sys
18-
sys.path.insert(0, os.path.abspath('.'))
1915

20-
from bayesml import base
21-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
22-
from bayesml import _check
16+
from .. import base
17+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning, ParameterFormatWarning
18+
from .. import _check
2319

2420
class GenModel(base.Generative):
2521
"""The stochastic data generative model and the prior distribution

bayesml/poisson/_poisson.py

Lines changed: 3 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -12,18 +12,9 @@
1212
from scipy.stats import nbinom as ss_nbinom
1313
import matplotlib.pyplot as plt
1414

15-
import matplotlib.pyplot as plt
16-
import os
17-
import sys
18-
sys.path.insert(0, os.path.abspath('.'))
19-
20-
from bayesml import base
21-
from bayesml._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
22-
from bayesml import _check
23-
24-
# from .. import base
25-
# from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
26-
# from .. import _check
15+
from .. import base
16+
from .._exceptions import ParameterFormatError, DataFormatError, CriteriaError, ResultWarning
17+
from .. import _check
2718

2819
class GenModel(base.Generative):
2920
"""The stochastic data generative model and the prior distribution.

0 commit comments

Comments
 (0)