21
21
\begin{align}
22
22
p(\boldsymbol{z} | \boldsymbol{\pi}) &= \mathrm{Cat}(\boldsymbol{z}|\boldsymbol{\pi}) = \prod_{k=1}^K \pi_k^{z_k},\\
23
23
p(\boldsymbol{x} | \boldsymbol{\mu}, \boldsymbol{\Lambda}, \boldsymbol{z}) &= \prod_{k=1}^K \mathcal{N}(\boldsymbol{x}|\boldsymbol{\mu}_k,\boldsymbol{\Lambda}_k^{-1})^{z_k} \\
24
- &= \prod_{k=1}^K \left( \frac{| \boldsymbol{\Lambda} |^{1/2}}{(2\pi)^{D/2}} \exp \left\{ -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^\top \boldsymbol{\Lambda} (\boldsymbol{x}-\boldsymbol{\mu}) \right\} \right)^{z_k},
24
+ &= \prod_{k=1}^K \left( \frac{| \boldsymbol{\Lambda}_k |^{1/2}}{(2\pi)^{D/2}} \exp \left\{ -\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu}_k )^\top \boldsymbol{\Lambda}_k (\boldsymbol{x}-\boldsymbol{\mu}_k ) \right\} \right)^{z_k}.
25
25
\end{align}
26
26
$$
27
27
@@ -38,8 +38,8 @@ The prior distribution is as follows:
38
38
$$
39
39
\begin{align}
40
40
p(\boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi}) &= \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_0,(\kappa_0 \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_0, \nu_0) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}_0) \\
41
- &= \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_0}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_0}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_0)^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_0) \right\} \\
42
- &\qquad \times B(\boldsymbol{W}_0, \nu_0) | \boldsymbol{\Lambda}_k |^{(\nu_0 - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ \boldsymbol{W}_0^{-1} \boldsymbol{\Lambda}_k \} \right\} \Biggr] \\
41
+ &= \Biggl[\, \prod_{k=1}^K \left( \frac{\kappa_0}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_0}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_0)^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_0) \right\} \notag \\
42
+ &\qquad \times B(\boldsymbol{W}_0, \nu_0) | \boldsymbol{\Lambda}_k |^{(\nu_0 - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ \boldsymbol{W}_0^{-1} \boldsymbol{\Lambda}_k \} \right\} \Biggr] \notag \ \
43
43
&\qquad \times C(\boldsymbol{\alpha}_0)\prod_{k=1}^K \pi_k^{\alpha_{0,k}-1},\\
44
44
\end{align}
45
45
$$
@@ -67,7 +67,7 @@ The apporoximate posterior distribution in the $t$-th iteration of a variational
67
67
$$
68
68
\begin{align}
69
69
q(\boldsymbol{z}^n, \boldsymbol{\mu},\boldsymbol{\Lambda},\boldsymbol{\pi}) &= \left\{ \prod_{i=1}^n \mathrm{Cat} (\boldsymbol{z}_i | \boldsymbol{r}_i^{(t)}) \right\} \left\{ \prod_{k=1}^K \mathcal{N}(\boldsymbol{\mu}_k|\boldsymbol{m}_{n,k}^{(t)},(\kappa_{n,k}^{(t)} \boldsymbol{\Lambda}_k)^{-1})\mathcal{W}(\boldsymbol{\Lambda}_k|\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) \right\} \mathrm{Dir}(\boldsymbol{\pi}|\boldsymbol{\alpha}_n^{(t)}) \\
70
- &= \Biggl[ \prod_{i=1}^n \prod_{k=1}^K (r_{i,k}^{(t)})^{z_{i,k}} \Biggr] \Biggl[ \prod_{k=1}^K \left( \frac{\kappa_{n,k}^{(t)}}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_{n,k}^{(t)}}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_{n,k}^{(t)})^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_{n,k}^{(t)}) \right\} \\
70
+ &= \Biggl[\, \prod_{i=1}^n \prod_{k=1}^K (r_{i,k}^{(t)})^{z_{i,k}} \Biggr] \Biggl[\, \prod_{k=1}^K \left( \frac{\kappa_{n,k}^{(t)}}{2\pi} \right)^{D/2} |\boldsymbol{\Lambda}_k|^{1/2} \exp \left\{ -\frac{\kappa_{n,k}^{(t)}}{2}(\boldsymbol{\mu}_k -\boldsymbol{m}_{n,k}^{(t)})^\top \boldsymbol{\Lambda}_k (\boldsymbol{\mu}_k - \boldsymbol{m}_{n,k}^{(t)}) \right\} \\
71
71
&\qquad \times B(\boldsymbol{W}_{n,k}^{(t)}, \nu_{n,k}^{(t)}) | \boldsymbol{\Lambda}_k |^{(\nu_{n,k}^{(t)} - D - 1) / 2} \exp \left\{ -\frac{1}{2} \mathrm{Tr} \{ ( \boldsymbol{W}_{n,k}^{(t)} )^{-1} \boldsymbol{\Lambda}_k \} \right\} \Biggr] \\
72
72
&\qquad \times C(\boldsymbol{\alpha}_n^{(t)})\prod_{k=1}^K \pi_k^{\alpha_{n,k}^{(t)}-1},\\
73
73
\end{align}
@@ -77,17 +77,17 @@ where the updating rule of the hyperparameters is as follows.
77
77
78
78
$$
79
79
\begin{align}
80
- N_k^{(t)} &= \sum_{i=1}^n r_{i,k}^{(t)} \\
81
- \bar{\boldsymbol{x}}_k^{(t)} &= \frac{1}{N_k^{(t)}} \sum_{i=1}^n r_{i,k}^{(t)} \boldsymbol{x}_i \\
80
+ N_k^{(t)} &= \sum_{i=1}^n r_{i,k}^{(t)}, \\
81
+ \bar{\boldsymbol{x}}_k^{(t)} &= \frac{1}{N_k^{(t)}} \sum_{i=1}^n r_{i,k}^{(t)} \boldsymbol{x}_i, \\
82
82
\boldsymbol{m}_{n,k}^{(t+1)} &= \frac{\kappa_0\boldsymbol{\mu}_0 + N_k^{(t)} \bar{\boldsymbol{x}}_k^{(t)}}{\kappa_0 + N_k^{(t)}}, \\
83
83
\kappa_{n,k}^{(t+1)} &= \kappa_0 + N_k^{(t)}, \\
84
84
(\boldsymbol{W}_{n,k}^{(t+1)})^{-1} &= \boldsymbol{W}_0^{-1} + \sum_{i=1}^{n} r_{i,k}^{(t)} (\boldsymbol{x}_i-\bar{\boldsymbol{x}}_k^{(t)})(\boldsymbol{x}_i-\bar{\boldsymbol{x}}_k^{(t)})^\top + \frac{\kappa_0 N_k^{(t)}}{\kappa_0 + N_k^{(t)}}(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)(\bar{\boldsymbol{x}}_k^{(t)}-\boldsymbol{\mu}_0)^\top, \\
85
85
\nu_{n,k}^{(t+1)} &= \nu_0 + N_k^{(t)},\\
86
- \alpha_{n,k}^{(t+1)} &= \alpha_{0,k} + N_k^{(t)} \\
87
- \ln \rho_{i,k}^{(t+1)} &= \psi (\alpha_{n,k}^{(t+1)}) - \psi ( {\textstyle \sum_{k=1}^K \alpha_{n,k}^{(t+1)}} ) \nonumber \\
88
- &\qquad + \frac{1}{2} \Biggl[ \sum_{d=1}^D \psi \left( \frac{\nu_{n,k}^{(t+1)} + 1 - d}{2} \right) + D \ln 2 + \ln | \boldsymbol{W}_{n,k}^{(t+1)} | \nonumber \\
89
- &\qquad - D \ln (2 \pi ) - \frac{D}{\kappa_{n,k}^{(t+1)}} - \nu_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)})^\top \boldsymbol{W}_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)}) \Biggr] \\
90
- r_{i,k}^{(t+1)} &= \frac{\rho_{i,k}^{(t+1)}}{\sum_{k =1}^K \rho_{i,k }^{(t+1)}}
86
+ \alpha_{n,k}^{(t+1)} &= \alpha_{0,k} + N_k^{(t)}, \\
87
+ \ln \rho_{i,k}^{(t+1)} &= \psi (\alpha_{n,k}^{(t+1)}) - \psi ( {\textstyle \sum_{k=1}^K \alpha_{n,k}^{(t+1)}} ) \notag \\
88
+ &\qquad + \frac{1}{2} \Biggl[\, \sum_{d=1}^D \psi \left( \frac{\nu_{n,k}^{(t+1)} + 1 - d}{2} \right) + D \ln 2 + \ln | \boldsymbol{W}_{n,k}^{(t+1)} | \notag \\
89
+ &\qquad - D \ln (2 \pi ) - \frac{D}{\kappa_{n,k}^{(t+1)}} - \nu_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)})^\top \boldsymbol{W}_{n,k}^{(t+1)} (\boldsymbol{x}_i - \boldsymbol{m}_{n,k}^{(t+1)}) \Biggr], \\
90
+ r_{i,k}^{(t+1)} &= \frac{\rho_{i,k}^{(t+1)}}{\sum_{j =1}^K \rho_{i,j }^{(t+1)}}.
91
91
\end{align}
92
92
$$
93
93
102
102
\begin{align}
103
103
&p(x_{n+1}|x^n) \\
104
104
&= \frac{1}{\sum_{k=1}^K \alpha_{n,k}^{(t)}} \sum_{k=1}^K \alpha_{n,k}^{(t)} \mathrm{St}(x_{n+1}|\boldsymbol{\mu}_{\mathrm{p},k},\boldsymbol{\Lambda}_{\mathrm{p},k}, \nu_{\mathrm{p},k}) \\
105
- &= \frac{1}{\sum_{k=1}^K \alpha_{n,k}^{(t)}} \sum_{k=1}^K \alpha_{n,k}^{(t)} \Biggl[ \frac{\Gamma (\nu_{\mathrm{p},k} / 2 + D / 2)}{\Gamma (\nu_{\mathrm{p},k} / 2)} \frac{|\boldsymbol{\Lambda}_{\mathrm{p},k}|^{1/2}}{(\nu_{\mathrm{p},k} \pi)^{D/2}} \nonumber \\
105
+ &= \frac{1}{\sum_{k=1}^K \alpha_{n,k}^{(t)}} \sum_{k=1}^K \alpha_{n,k}^{(t)} \Biggl[ \frac{\Gamma (\nu_{\mathrm{p},k} / 2 + D / 2)}{\Gamma (\nu_{\mathrm{p},k} / 2)} \frac{|\boldsymbol{\Lambda}_{\mathrm{p},k}|^{1/2}}{(\nu_{\mathrm{p},k} \pi)^{D/2}} \notag \\
106
106
&\qquad \qquad \qquad \qquad \qquad \times \left( 1 + \frac{1}{\nu_{\mathrm{p},k}} (\boldsymbol{x}_{n+1} - \boldsymbol{\mu}_{\mathrm{p},k})^\top \boldsymbol{\Lambda}_{\mathrm{p},k} (\boldsymbol{x}_{n+1} - \boldsymbol{\mu}_{\mathrm{p},k}) \right)^{-\nu_{\mathrm{p},k}/2 - D/2} \Biggr],
107
107
\end{align}
108
108
$$
@@ -111,8 +111,8 @@ where the parameters are obtained from the hyperparameters of the posterior dist
111
111
112
112
$$
113
113
\begin{align}
114
- \boldsymbol{\mu}_{\mathrm{p},k} &= \boldsymbol{m}_{n,k}^{(t)} \\
115
- \boldsymbol{\Lambda}_{\ mathrm{p},k} &= \frac{\kappa_{n,k}^{(t)} (\ nu_{n,k}^{(t)} - D + 1)}{\kappa_{n,k}^{(t)} + 1} \boldsymbol{W}_{n,k}^{(t)}, \\
116
- \nu_{\ mathrm{p},k} &= \nu_{n,k}^{(t)} - D + 1.
114
+ \boldsymbol{\mu}_{\mathrm{p},k} &= \boldsymbol{m}_{n,k}^{(t)}, \\
115
+ \nu_{\ mathrm{p},k} &= \nu_{n,k}^{(t)} - D + 1, \\
116
+ \boldsymbol{\Lambda}_{\ mathrm{p},k} &= \frac{\kappa_{n,k}^{(t)} \ nu_{\mathrm{p},k}}{\kappa_{ n,k}^{(t)} + 1} \boldsymbol{W}_{n,k}^{(t)} .
117
117
\end{align}
118
118
$$
0 commit comments