You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The stochastic data generative model is as follows:
6
+
7
+
* :math:`\mathcal{X}` : a space of an explanatory variable (a finite set)
8
+
* :math:`\boldsymbol{x}=[x_1, \ldots, x_d] \in \mathcal{X}^d` : an explanatory variable
9
+
* :math:`\mathcal{Y}` : a space of an objective variable
10
+
* :math:`y \in \mathcal{Y}` : an objective variable
11
+
* :math:`D_\mathrm{max} \in \mathbb{N}` : the maximum depth of trees
12
+
* :math:`T` : :math:`|\mathcal{X}|`-ary regular tree whose depth is smaller than or equal to :math:`D_\mathrm{max}`, where "regular" means that all inner nodes have :math:`k` child nodes.
13
+
* :math:`\mathcal{T}` : a set of :math:`T`
14
+
* :math:`s` : a node of a tree
15
+
* :math:`\mathcal{S}` : a set of :math:`s`
16
+
* :math:`\mathcal{I}(T)` : a set of inner nodes of :math:`T`
17
+
* :math:`\mathcal{L}(T)` : a set of leaf nodes of :math:`T`
* :math:`g_{0,s} \in [0,1]` : a hyperparameter assigned to :math:`s \in \mathcal{S}`
28
+
* :math:`M_{T, \boldsymbol{k}}` : a meta-tree for :math:`(T, \boldsymbol{k})`
29
+
* :math:`\mathcal{T}_{M_{T, \boldsymbol{k}}}` : a set of :math:`T` represented by a meta-tree :math:`M_{T, \boldsymbol{k}}`
30
+
* :math:`B \in \mathbb{N}` : the number of meta-trees
31
+
* :math:`\mathcal{M}=\{(T_1, \boldsymbol{k}_1), (T_2, \boldsymbol{k}_2), \ldots, (T_B, \boldsymbol{k}_B) \}` for :math:`B` meta-trees :math:`M_{T_1, \boldsymbol{k}_1}, M_{T_2, \boldsymbol{k}_2}, \dots, M_{T_B, \boldsymbol{k}_B}`. (These meta-trees must be given beforehand by some method, e.g., constructed from bootstrap samples similar to the random forest.)
where :math:`s_{\mathrm{child}}` is the child node of :math:`s` on the path corresponding to :math:`\boldsymbol{x}_{i}` in :math:`M_{T, \boldsymbol{k}}` and
The mode of the predictive distribution can be also calculated by using the above equation.
122
+
123
+
References
124
+
125
+
* Dobashi, N.; Saito, S.; Nakahara, Y.; Matsushima, T. Meta-Tree Random Forest: Probabilistic Data-Generative Model and Bayes Optimal Prediction. *Entropy* 2021, 23, 768. https://doi.org/10.3390/e23060768
126
+
* Nakahara, Y.; Saito, S.; Kamatsuka, A.; Matsushima, T. Probability Distribution on Full Rooted Trees. *Entropy* 2022, 24, 328. https://doi.org/10.3390/e24030328
0 commit comments