@@ -12,6 +12,7 @@ _randint_type = {'bool': (0, 2),
12
12
ctypedef np.npy_bool bool_t
13
13
14
14
cdef inline uint64_t _gen_mask(uint64_t max_val) nogil:
15
+ """Mask generator for use in bounded random numbers"""
15
16
# Smallest bit mask >= max
16
17
cdef uint64_t mask = max_val
17
18
mask |= mask >> 1
@@ -21,53 +22,23 @@ cdef inline uint64_t _gen_mask(uint64_t max_val) nogil:
21
22
mask |= mask >> 16
22
23
mask |= mask >> 32
23
24
return mask
25
+
26
+
24
27
{{
25
28
py:
26
- bc_ctypes = (('uint32', 'uint32', 'uint64', 'NPY_UINT64', 0, 0, 0, '0X100000000ULL'),
29
+ type_info = (('uint32', 'uint32', 'uint64', 'NPY_UINT64', 0, 0, 0, '0X100000000ULL'),
27
30
('uint16', 'uint16', 'uint32', 'NPY_UINT32', 1, 16, 0, '0X10000UL'),
28
31
('uint8', 'uint8', 'uint16', 'NPY_UINT16', 3, 8, 0, '0X100UL'),
29
32
('bool','bool', 'uint8', 'NPY_UINT8', 31, 1, 0, '0x2UL'),
30
33
('int32', 'uint32', 'uint64', 'NPY_INT64', 0, 0, '-0x80000000LL', '0x80000000LL'),
31
34
('int16', 'uint16', 'uint32', 'NPY_INT32', 1, 16, '-0x8000LL', '0x8000LL' ),
32
35
('int8', 'uint8', 'uint16', 'NPY_INT16', 3, 8, '-0x80LL', '0x80LL' ),
33
36
)}}
34
- {{for nptype, utype, nptype_up, npctype, remaining, bitshift, lb, ub in bc_ctypes }}
37
+ {{for nptype, utype, nptype_up, npctype, remaining, bitshift, lb, ub in type_info }}
35
38
{{ py: otype = nptype + '_' if nptype == 'bool' else nptype }}
36
- cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *state, object lock):
37
- """
38
- _rand_{{nptype}}(low, high, size, *state, lock)
39
-
40
- Return random np.{{nptype}} integers between `low` and `high`, inclusive.
41
-
42
- Return random integers from the "discrete uniform" distribution in the
43
- closed interval [`low`, `high`). If `high` is None (the default),
44
- then results are from [0, `low`). On entry the arguments are presumed
45
- to have been validated for size and order for the np.{{nptype}} type.
46
-
47
- Parameters
48
- ----------
49
- low : int or array-like
50
- Lowest (signed) integer to be drawn from the distribution (unless
51
- ``high=None``, in which case this parameter is the *highest* such
52
- integer).
53
- high : int or array-like
54
- If provided, the largest (signed) integer to be drawn from the
55
- distribution (see above for behavior if ``high=None``).
56
- size : int or tuple of ints
57
- Output shape. If the given shape is, e.g., ``(m, n, k)``, then
58
- ``m * n * k`` samples are drawn. Default is None, in which case a
59
- single value is returned.
60
- state : augmented random state
61
- State to use in the core random number generators
62
- lock : threading.Lock
63
- Lock to prevent multiple using a single RandomState simultaneously
64
39
65
- Returns
66
- -------
67
- out : python scalar or ndarray of np.{{nptype}}
68
- `size`-shaped array of random integers from the appropriate
69
- distribution, or a single such random int if `size` not provided.
70
- """
40
+ cdef object _rand_{{nptype}}_broadcast(np.ndarray low, np.ndarray high, object size, aug_state *state, object lock):
41
+ """Array path for smaller integer types"""
71
42
cdef {{utype}}_t rng, last_rng, off, val, mask, out_val
72
43
cdef uint32_t buf
73
44
cdef {{utype}}_t *out_data
@@ -77,40 +48,6 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
77
48
cdef np.broadcast it
78
49
cdef int buf_rem = 0
79
50
80
- if size is not None:
81
- if (np.prod(size) == 0):
82
- return np.empty(size, dtype=np.{{nptype}})
83
-
84
- low = np.array(low, copy=False)
85
- high = np.array(high, copy=False)
86
- low_ndim = np.PyArray_NDIM(<np.ndarray>low)
87
- high_ndim = np.PyArray_NDIM(<np.ndarray>high)
88
- if ((low_ndim == 0 or (low_ndim==1 and low.size==1 and size is not None)) and
89
- (high_ndim == 0 or (high_ndim==1 and high.size==1 and size is not None))):
90
- low = int(low)
91
- high = int(high)
92
-
93
- if low < {{lb}}:
94
- raise ValueError("low is out of bounds for {{nptype}}")
95
- if high > {{ub}}:
96
- raise ValueError("high is out of bounds for {{nptype}}")
97
- if low >= high:
98
- raise ValueError("low >= high")
99
-
100
- high -= 1
101
- rng = <{{utype}}_t>(high - low)
102
- off = <{{utype}}_t>(<{{nptype}}_t>low)
103
- if size is None:
104
- with lock:
105
- random_bounded_{{utype}}_fill(state, off, rng, 1, &out_val)
106
- return np.{{otype}}(<{{nptype}}_t>out_val)
107
- else:
108
- out_arr = <np.ndarray>np.empty(size, np.{{nptype}})
109
- cnt = np.PyArray_SIZE(out_arr)
110
- out_data = <{{utype}}_t *>np.PyArray_DATA(out_arr)
111
- with lock, nogil:
112
- random_bounded_{{utype}}_fill(state, off, rng, cnt, out_data)
113
- return out_arr
114
51
115
52
# Array path
116
53
low_arr = <np.ndarray>low
@@ -149,16 +86,91 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
149
86
out_data[i] = random_buffered_bounded_{{utype}}(state, off, rng, mask, &buf_rem, &buf)
150
87
151
88
np.PyArray_MultiIter_NEXT(it)
152
-
153
89
return out_arr
154
90
{{endfor}}
91
+
155
92
{{
156
93
py:
157
- big_bc_ctypes = (('uint64', 'uint64', 'NPY_UINT64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'),
94
+ big_type_info = (('uint64', 'uint64', 'NPY_UINT64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'),
158
95
('int64', 'uint64', 'NPY_INT64', '-0x8000000000000000LL', '0x7FFFFFFFFFFFFFFFLL' )
159
96
)}}
160
- {{for nptype, utype, npctype, lb, ub in big_bc_ctypes }}
97
+ {{for nptype, utype, npctype, lb, ub in big_type_info }}
161
98
{{ py: otype = nptype}}
99
+ cdef object _rand_{{nptype}}_broadcast(object low, object high, object size, aug_state *state, object lock):
100
+ """Array path for 64-bit integer types"""
101
+ cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr
102
+ cdef np.npy_intp i, cnt
103
+ cdef np.broadcast it
104
+ cdef object closed_upper
105
+ cdef uint64_t *out_data
106
+ cdef {{nptype}}_t *highm1_data
107
+ cdef {{nptype}}_t low_v, high_v
108
+ cdef uint64_t rng, last_rng, val, mask, off, out_val
109
+
110
+ low_arr = <np.ndarray>low
111
+ high_arr = <np.ndarray>high
112
+
113
+ if np.any(np.less(low_arr, {{lb}})):
114
+ raise ValueError('low is out of bounds for {{nptype}}')
115
+
116
+ highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.{{nptype}})
117
+ highm1_data = <{{nptype}}_t *>np.PyArray_DATA(highm1_arr)
118
+ cnt = np.PyArray_SIZE(high_arr)
119
+ flat = high_arr.flat
120
+ for i in range(cnt):
121
+ closed_upper = int(flat[i]) - 1
122
+ if closed_upper > {{ub}}:
123
+ raise ValueError('high is out of bounds for {{nptype}}')
124
+ if closed_upper < {{lb}}:
125
+ raise ValueError('low >= high')
126
+ highm1_data[i] = <{{nptype}}_t>closed_upper
127
+
128
+ if np.any(np.greater(low_arr, highm1_arr)):
129
+ raise ValueError('low >= high')
130
+
131
+ high_arr = highm1_arr
132
+ low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST)
133
+
134
+ if size is not None:
135
+ out_arr = <np.ndarray>np.empty(size, np.{{nptype}})
136
+ else:
137
+ it = np.PyArray_MultiIterNew2(low_arr, high_arr)
138
+ out_arr = <np.ndarray>np.empty(it.shape, np.{{nptype}})
139
+
140
+ it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
141
+ out_data = <uint64_t *>np.PyArray_DATA(out_arr)
142
+ n = np.PyArray_SIZE(out_arr)
143
+ mask = last_rng = 0
144
+ with lock, nogil:
145
+ for i in range(n):
146
+ low_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
147
+ high_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
148
+ rng = <{{utype}}_t>(high_v - low_v) # No -1 here since implemented above
149
+ off = <{{utype}}_t>(<{{nptype}}_t>low_v)
150
+
151
+ if rng != last_rng:
152
+ mask = _gen_mask(rng)
153
+ out_data[i] = random_bounded_uint64(state, off, rng, mask)
154
+
155
+ np.PyArray_MultiIter_NEXT(it)
156
+
157
+ return out_arr
158
+ {{endfor}}
159
+
160
+ {{
161
+ py:
162
+ type_info = (('uint64', 'uint64', '0x0ULL', '0xFFFFFFFFFFFFFFFFULL'),
163
+ ('uint32', 'uint32', '0x0UL', '0XFFFFFFFFUL'),
164
+ ('uint16', 'uint16', '0x0UL', '0XFFFFUL'),
165
+ ('uint8', 'uint8', '0x0UL', '0XFFUL'),
166
+ ('bool', 'bool', '0x0UL', '0x1UL'),
167
+ ('int64', 'uint64', '-0x8000000000000000LL', '0x7FFFFFFFFFFFFFFFL'),
168
+ ('int32', 'uint32', '-0x80000000L', '0x7FFFFFFFL'),
169
+ ('int16', 'uint16', '-0x8000L', '0x7FFFL' ),
170
+ ('int8', 'uint8', '-0x80L', '0x7FL' )
171
+ )}}
172
+ {{for nptype, utype, lb, ub in type_info}}
173
+ {{ py: otype = nptype + '_' if nptype == 'bool' else nptype }}
162
174
cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *state, object lock):
163
175
"""
164
176
_rand_{{nptype}}(low, high, size, *state, lock)
@@ -194,34 +206,30 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
194
206
`size`-shaped array of random integers from the appropriate
195
207
distribution, or a single such random int if `size` not provided.
196
208
"""
197
- cdef np.ndarray low_arr, high_arr, out_arr, highm1_arr
209
+ cdef np.ndarray out_arr, low_arr, high_arr
210
+ cdef {{utype}}_t rng, off, out_val
211
+ cdef {{utype}}_t *out_data
198
212
cdef np.npy_intp i, cnt
199
- cdef np.broadcast it
200
- cdef object closed_upper
201
- cdef uint64_t *out_data
202
- cdef {{nptype}}_t *highm1_data
203
- cdef {{nptype}}_t low_v, high_v
204
- cdef uint64_t rng, last_rng, val, mask, off, out_val
205
213
206
214
if size is not None:
207
215
if (np.prod(size) == 0):
208
216
return np.empty(size, dtype=np.{{nptype}})
209
217
210
- low = np.array(low, copy=False)
211
- high = np.array(high, copy=False)
212
- low_ndim = np.PyArray_NDIM(<np.ndarray>low )
213
- high_ndim = np.PyArray_NDIM(<np.ndarray>high )
214
- if ((low_ndim == 0 or (low_ndim==1 and low .size==1 and size is not None)) and
215
- (high_ndim == 0 or (high_ndim==1 and high .size==1 and size is not None))):
216
- low = int(low )
217
- high = int(high )
218
- high -= 1 # Use a closed interval
218
+ low_arr = <np.ndarray> np.array(low, copy=False)
219
+ high_arr = <np.ndarray> np.array(high, copy=False)
220
+ low_ndim = np.PyArray_NDIM(low_arr )
221
+ high_ndim = np.PyArray_NDIM(high_arr )
222
+ if ((low_ndim == 0 or (low_ndim==1 and low_arr .size==1 and size is not None)) and
223
+ (high_ndim == 0 or (high_ndim==1 and high_arr .size==1 and size is not None))):
224
+ low = int(low_arr )
225
+ high = int(high_arr )
226
+ high -= 1
219
227
220
228
if low < {{lb}}:
221
229
raise ValueError("low is out of bounds for {{nptype}}")
222
230
if high > {{ub}}:
223
231
raise ValueError("high is out of bounds for {{nptype}}")
224
- if low > high:
232
+ if low > high: # -1 already subtracted, closed interval
225
233
raise ValueError("low >= high")
226
234
227
235
rng = <{{utype}}_t>(high - low)
@@ -237,53 +245,5 @@ cdef object _rand_{{nptype}}(object low, object high, object size, aug_state *st
237
245
with lock, nogil:
238
246
random_bounded_{{utype}}_fill(state, off, rng, cnt, out_data)
239
247
return out_arr
240
-
241
- low_arr = <np.ndarray>low
242
- high_arr = <np.ndarray>high
243
-
244
- if np.any(np.less(low_arr, {{lb}})):
245
- raise ValueError('low is out of bounds for {{nptype}}')
246
-
247
- highm1_arr = <np.ndarray>np.empty_like(high_arr, dtype=np.{{nptype}})
248
- highm1_data = <{{nptype}}_t *>np.PyArray_DATA(highm1_arr)
249
- cnt = np.PyArray_SIZE(high_arr)
250
- flat = high_arr.flat
251
- for i in range(cnt):
252
- closed_upper = int(flat[i]) - 1
253
- if closed_upper > {{ub}}:
254
- raise ValueError('high is out of bounds for {{nptype}}')
255
- if closed_upper < {{lb}}:
256
- raise ValueError('low >= high')
257
- highm1_data[i] = <{{nptype}}_t>closed_upper
258
-
259
- if np.any(np.greater(low_arr, highm1_arr)):
260
- raise ValueError('low >= high')
261
-
262
- high_arr = highm1_arr
263
- low_arr = <np.ndarray>np.PyArray_FROM_OTF(low, np.{{npctype}}, np.NPY_ALIGNED | np.NPY_FORCECAST)
264
-
265
- if size is not None:
266
- out_arr = <np.ndarray>np.empty(size, np.{{nptype}})
267
- else:
268
- it = np.PyArray_MultiIterNew2(low_arr, high_arr)
269
- out_arr = <np.ndarray>np.empty(it.shape, np.{{nptype}})
270
-
271
- it = np.PyArray_MultiIterNew3(low_arr, high_arr, out_arr)
272
- out_data = <uint64_t *>np.PyArray_DATA(out_arr)
273
- n = np.PyArray_SIZE(out_arr)
274
- mask = last_rng = 0
275
- with lock, nogil:
276
- for i in range(n):
277
- low_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 0))[0]
278
- high_v = (<{{nptype}}_t*>np.PyArray_MultiIter_DATA(it, 1))[0]
279
- rng = <{{utype}}_t>(high_v - low_v) # No -1 here since implemented above
280
- off = <{{utype}}_t>(<{{nptype}}_t>low_v)
281
-
282
- if rng != last_rng:
283
- mask = _gen_mask(rng)
284
- out_data[i] = random_bounded_uint64(state, off, rng, mask)
285
-
286
- np.PyArray_MultiIter_NEXT(it)
287
-
288
- return out_arr
248
+ return _rand_{{nptype}}_broadcast(low_arr, high_arr, size, state, lock)
289
249
{{endfor}}
0 commit comments