|
8 | 8 | signal = signal[:,0]
|
9 | 9 |
|
10 | 10 | ############# Extract MFCC features #############
|
11 |
| -mfcc = speechpy.mfcc(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.02, |
| 11 | +mfcc = speechpy.mfcc(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01, |
12 | 12 | num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)
|
| 13 | +mfcc_cmvn = speechpy.cmvnw(mfcc,win_size=301,variance_normalization=True) |
| 14 | +print('mfcc(mean + variance normalized) feature shape=', mfcc_cmvn.shape) |
| 15 | + |
13 | 16 | mfcc_feature_cube = speechpy.extract_derivative_feature(mfcc)
|
14 | 17 | print('mfcc feature cube shape=', mfcc_feature_cube.shape)
|
15 | 18 |
|
16 | 19 | ############# Extract logenergy features #############
|
17 |
| -logenergy = speechpy.lmfe(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.02, |
| 20 | +logenergy = speechpy.lmfe(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01, |
18 | 21 | num_filters=40, fft_length=512, low_frequency=0, high_frequency=None)
|
19 | 22 | logenergy_feature_cube = speechpy.extract_derivative_feature(logenergy)
|
20 | 23 | print('logenergy features=', logenergy.shape)
|
21 | 24 |
|
22 | 25 | # Example of staching frames
|
23 |
| -signal = speechpy.stack_frames(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.020, Filter=lambda x: np.ones((x,)), |
| 26 | +signal = speechpy.stack_frames(signal, sampling_frequency=fs, frame_length=0.020, frame_stride=0.01, Filter=lambda x: np.ones((x,)), |
24 | 27 | zero_padding=True)
|
25 | 28 |
|
26 | 29 |
|
|
0 commit comments