This repository was archived by the owner on Nov 17, 2023. It is now read-only.
mxnet.base.MXNetError: [08:13:05] src/ndarray/ndarray.cc:1137: Check failed: to.IsDefaultData() #21218
Unanswered
Samirakamali
asked this question in
Q&A
Replies: 0 comments
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Uh oh!
There was an error while loading. Please reload this page.
-
Hi,
I am trying to feed my tabular dataset to a federated Asynchronous algorithm written by MXNet. but after executing the code I face the following error:
warm up
[Epoch 0] validation: acc-top1=0.631837 acc-top5=0.949816, loss=1.210562, lr=0.100000, rho=0.010000, alpha=0.800000, max_delay=12, mean_delay=0.000000, time=2.378084
Traceback (most recent call last):
File "/content/drive/MyDrive/scada_totorial_FL/data-privacy-main/experiments/async_fl-main/Copy_train__mxnet.py", line 216, in
npx.waitall()
File "/usr/local/lib/python3.10/dist-packages/mxnet/ndarray/ndarray.py", line 200, in waitall
check_call(_LIB.MXNDArrayWaitAll())
File "/usr/local/lib/python3.10/dist-packages/mxnet/base.py", line 255, in check_call
raise MXNetError(py_str(_LIB.MXGetLastError()))
mxnet.base.MXNetError: [08:13:05] src/ndarray/ndarray.cc:1137: Check failed: to.IsDefaultData():
Stack trace:
[bt] (0) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(+0x313f4b) [0x7d090db13f4b]
[bt] (1) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(void mxnet::CopyFromToDnsImpl<mshadow::cpu, mshadow::cpu>(mxnet::NDArray const&, mxnet::NDArray const&, mxnet::RunContext)+0xa02) [0x7d0910ebf342]
[bt] (2) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(void mxnet::CopyFromToImpl<mshadow::cpu, mshadow::cpu>(mxnet::NDArray const&, mxnet::NDArray const&, mxnet::RunContext, std::vector<mxnet::Resource, std::allocatormxnet::Resource > const&)+0x6ce) [0x7d0910ec727e]
[bt] (3) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(+0x36c742d) [0x7d0910ec742d]
[bt] (4) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(+0x34ca0d1) [0x7d0910cca0d1]
[bt] (5) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(+0x34cd404) [0x7d0910ccd404]
[bt] (6) /usr/local/lib/python3.10/dist-packages/mxnet/libmxnet.so(+0x34c8884) [0x7d0910cc8884]
[bt] (7) /lib/x86_64-linux-gnu/libstdc++.so.6(+0xdc3ec) [0x7d091a8c83ec]
[bt] (8) /lib/x86_64-linux-gnu/libc.so.6(+0x94b43) [0x7d0921763b43]
if model_name == 'default':
net = gluon.nn.Sequential()
with net.name_scope():
# First convolutional layer
net.add(gluon.nn.Conv1D(channels=8, kernel_size=3, padding= 1, activation='relu'))
net.add(gluon.nn.MaxPool1D(pool_size=2))
net.add(gluon.nn.Conv1D(channels=16, kernel_size=3, padding=1, activation='relu'))
net.add(gluon.nn.AvgPool1D(pool_size=2))
net.add(gluon.nn.Flatten())
net.add(gluon.nn.Dense(classes))
# net.add(gluon.nn.Dropout(rate=0.25))
# net.add(gluon.nn.Dense(classes))
else:
model_kwargs = {'ctx': context, 'pretrained': False, 'classes': classes}
net = get_model(model_name, **model_kwargs)
....
for epoch in range(args.epochs):
could you possibly help me? I need it urgently.
Beta Was this translation helpful? Give feedback.
All reactions