@@ -235,6 +235,7 @@ enum llm_arch {
235
235
LLM_ARCH_GRANITE,
236
236
LLM_ARCH_GRANITE_MOE,
237
237
LLM_ARCH_COHERE2,
238
+ LLM_ARCH_HUNYUAN_MOE,
238
239
LLM_ARCH_UNKNOWN,
239
240
};
240
241
@@ -291,6 +292,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
291
292
{ LLM_ARCH_GRANITE, "granite" },
292
293
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
293
294
{ LLM_ARCH_COHERE2, "cohere2" },
295
+ { LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
294
296
{ LLM_ARCH_UNKNOWN, "(unknown)" },
295
297
};
296
298
@@ -1595,6 +1597,29 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
1595
1597
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
1596
1598
},
1597
1599
},
1600
+ {
1601
+ LLM_ARCH_HUNYUAN_MOE,
1602
+ {
1603
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
1604
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
1605
+ { LLM_TENSOR_OUTPUT, "output" },
1606
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
1607
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
1608
+ { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
1609
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
1610
+ { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
1611
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
1612
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
1613
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
1614
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
1615
+ { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
1616
+ { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
1617
+ { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
1618
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
1619
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
1620
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
1621
+ },
1622
+ },
1598
1623
{
1599
1624
LLM_ARCH_UNKNOWN,
1600
1625
{
@@ -1638,6 +1663,7 @@ enum llm_chat_template {
1638
1663
LLM_CHAT_TEMPLATE_MEGREZ,
1639
1664
LLM_CHAT_TEMPLATE_LLAMA4,
1640
1665
LLM_CHAT_TEMPLATE_BITNET,
1666
+ LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
1641
1667
LLM_CHAT_TEMPLATE_UNKNOWN,
1642
1668
};
1643
1669
@@ -1675,6 +1701,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
1675
1701
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
1676
1702
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
1677
1703
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
1704
+ { "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE },
1678
1705
{ "bitnet", LLM_CHAT_TEMPLATE_BITNET },
1679
1706
};
1680
1707
@@ -2570,6 +2597,7 @@ enum e_model {
2570
2597
MODEL_27B,
2571
2598
MODEL_17B_16E,
2572
2599
MODEL_17B_128E,
2600
+ MODEL_80B_A13B,
2573
2601
};
2574
2602
2575
2603
static const size_t kiB = 1024;
@@ -5203,6 +5231,7 @@ static const char * llama_model_type_name(e_model type) {
5203
5231
case MODEL_27B: return "27B";
5204
5232
case MODEL_17B_16E: return "17Bx16E (Scout)";
5205
5233
case MODEL_17B_128E: return "17Bx128E (Maverick)";
5234
+ case MODEL_80B_A13B: return "80B.A13B";
5206
5235
default: return "?B";
5207
5236
}
5208
5237
}
@@ -6037,6 +6066,17 @@ static void llm_load_hparams(
6037
6066
default: model.type = e_model::MODEL_UNKNOWN;
6038
6067
}
6039
6068
} break;
6069
+ case LLM_ARCH_HUNYUAN_MOE:
6070
+ {
6071
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
6072
+ ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
6073
+ ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
6074
+
6075
+ switch (hparams.n_layer) {
6076
+ case 32: model.type = e_model::MODEL_80B_A13B; break;
6077
+ default: model.type = e_model::MODEL_UNKNOWN;
6078
+ }
6079
+ } break;
6040
6080
default: (void)0;
6041
6081
}
6042
6082
@@ -6306,6 +6346,10 @@ static void llm_load_vocab(
6306
6346
tokenizer_pre == "seed-coder") {
6307
6347
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
6308
6348
vocab.tokenizer_clean_spaces = false;
6349
+ } else if (
6350
+ tokenizer_pre == "hunyuan") {
6351
+ vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
6352
+ vocab.tokenizer_clean_spaces = false;
6309
6353
} else {
6310
6354
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
6311
6355
}
@@ -9164,6 +9208,47 @@ static bool llm_load_tensors(
9164
9208
layer.ffn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
9165
9209
}
9166
9210
} break;
9211
+ case LLM_ARCH_HUNYUAN_MOE:
9212
+ {
9213
+ model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
9214
+
9215
+ // output
9216
+ model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
9217
+ model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
9218
+
9219
+ // if output is NULL, init from the input tok embed
9220
+ if (model.output == NULL) {
9221
+ model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
9222
+ }
9223
+
9224
+ for (int i = 0; i < n_layer; ++i) {
9225
+ ggml_context * ctx_layer = ctx_for_layer(i);
9226
+ ggml_context * ctx_split = ctx_for_layer_split(i);
9227
+
9228
+ auto & layer = model.layers[i];
9229
+
9230
+ layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
9231
+
9232
+ layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
9233
+ layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
9234
+ layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
9235
+ layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
9236
+
9237
+ layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
9238
+ layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
9239
+
9240
+ layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
9241
+
9242
+ layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
9243
+ layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
9244
+ layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
9245
+ layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
9246
+
9247
+ layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
9248
+ layer.ffn_up_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
9249
+ layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
9250
+ }
9251
+ } break;
9167
9252
default:
9168
9253
throw std::runtime_error("unknown architecture");
9169
9254
}
@@ -16862,6 +16947,158 @@ struct llm_build_context {
16862
16947
16863
16948
return gf;
16864
16949
}
16950
+
16951
+ struct ggml_cgraph * build_hunyuan_moe() {
16952
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
16953
+
16954
+ const int64_t n_embd_head = hparams.n_embd_head_v;
16955
+
16956
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
16957
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
16958
+
16959
+ ggml_tensor * cur;
16960
+ ggml_tensor * inpL;
16961
+
16962
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
16963
+
16964
+ // inp_pos - contains the positions
16965
+ ggml_tensor * inp_pos = build_inp_pos();
16966
+
16967
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
16968
+
16969
+ const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
16970
+
16971
+ ggml_tensor * inp_out_ids = build_inp_out_ids();
16972
+
16973
+ for (int il = 0; il < n_layer; ++il) {
16974
+ ggml_tensor * inpSA = inpL;
16975
+
16976
+ // norm
16977
+ cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
16978
+ cb(cur, "attn_norm", il);
16979
+
16980
+ // self-attention
16981
+ {
16982
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
16983
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
16984
+
16985
+ // compute Q and K and RoPE them
16986
+ ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
16987
+ cb(Qcur, "Qcur", il);
16988
+ if (model.layers[il].bq) {
16989
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
16990
+ cb(Qcur, "Qcur", il);
16991
+ }
16992
+
16993
+ ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
16994
+ cb(Kcur, "Kcur", il);
16995
+ if (model.layers[il].bk) {
16996
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
16997
+ cb(Kcur, "Kcur", il);
16998
+ }
16999
+
17000
+ ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
17001
+ cb(Vcur, "Vcur", il);
17002
+ if (model.layers[il].bv) {
17003
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
17004
+ cb(Vcur, "Vcur", il);
17005
+ }
17006
+
17007
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
17008
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
17009
+
17010
+ Qcur = ggml_rope_ext(
17011
+ ctx0, Qcur, inp_pos, rope_factors,
17012
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
17013
+ ext_factor, attn_factor, beta_fast, beta_slow
17014
+ );
17015
+
17016
+ cb(Qcur, "Qcur", il);
17017
+ cb(Kcur, "Kcur", il);
17018
+ cb(Vcur, "Vcur", il);
17019
+
17020
+ Kcur = ggml_rope_ext(
17021
+ ctx0, Kcur, inp_pos, rope_factors,
17022
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
17023
+ ext_factor, attn_factor, beta_fast, beta_slow
17024
+ );
17025
+
17026
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, cb, il);
17027
+ cb(Kcur, "Kcur_norm", il);
17028
+
17029
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, cb, il);
17030
+ cb(Qcur, "Qcur_norm", il);
17031
+
17032
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
17033
+ cb(cur, "attn_out", il);
17034
+ }
17035
+
17036
+ if (il == n_layer - 1 && inp_out_ids) {
17037
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
17038
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
17039
+ }
17040
+
17041
+ ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
17042
+ cb(ffn_inp, "ffn_inp", il);
17043
+
17044
+ cur = llm_build_norm(ctx0,ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il);
17045
+ cb(cur, "ffn_norm", il);
17046
+
17047
+ // feed-forward network (non-MoE)
17048
+ ggml_tensor * cur_mlp = llm_build_ffn(ctx0, lctx, cur,
17049
+ model.layers[il].ffn_up_shexp, NULL, NULL,
17050
+ model.layers[il].ffn_gate_shexp, NULL, NULL,
17051
+ model.layers[il].ffn_down_shexp, NULL, NULL,
17052
+ NULL,
17053
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
17054
+ cb(cur_mlp, "ffn_mlp", il);
17055
+
17056
+ // MoE branch
17057
+ ggml_tensor * cur_moe = llm_build_moe_ffn(ctx0, lctx, cur,
17058
+ model.layers[il].ffn_gate_inp,
17059
+ model.layers[il].ffn_up_exps,
17060
+ model.layers[il].ffn_gate_exps,
17061
+ model.layers[il].ffn_down_exps,
17062
+ nullptr,
17063
+ n_expert, n_expert_used,
17064
+ LLM_FFN_SILU,
17065
+ true, // norm_topk_prob
17066
+ false,
17067
+ 0.0,
17068
+ LLM_EXPERT_GATING_FUNC_SOFTMAX,
17069
+ cb,
17070
+ il);
17071
+ cb(cur_moe, "ffn_moe_out", il);
17072
+
17073
+ ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
17074
+ cb(ffn_out, "ffn_out", il);
17075
+
17076
+ cur = ggml_add(ctx0, ffn_out, ffn_inp);
17077
+
17078
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
17079
+ cb(cur, "l_out", il);
17080
+
17081
+ // input for next layer
17082
+ inpL = cur;
17083
+ }
17084
+
17085
+ cur = inpL;
17086
+
17087
+ cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
17088
+
17089
+ cb(cur, "result_norm", -1);
17090
+ //res->t_embd = cur;
17091
+
17092
+ // lm_head
17093
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
17094
+
17095
+ cb(cur, "result_output", -1);
17096
+ //res->t_logits = cur;
17097
+
17098
+ ggml_build_forward_expand(gf, cur);
17099
+
17100
+ return gf;
17101
+ }
16865
17102
};
16866
17103
16867
17104
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -17157,6 +17394,10 @@ static struct ggml_cgraph * llama_build_graph(
17157
17394
{
17158
17395
result = llm.build_jais();
17159
17396
} break;
17397
+ case LLM_ARCH_HUNYUAN_MOE:
17398
+ {
17399
+ result = llm.build_hunyuan_moe();
17400
+ } break;
17160
17401
default:
17161
17402
GGML_ABORT("fatal error");
17162
17403
}
@@ -20929,6 +21170,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
20929
21170
case LLM_ARCH_OPENELM:
20930
21171
case LLM_ARCH_GPTNEOX:
20931
21172
case LLM_ARCH_CODESHELL:
21173
+ case LLM_ARCH_HUNYUAN_MOE:
20932
21174
return LLAMA_ROPE_TYPE_NEOX;
20933
21175
20934
21176
// all model arches should be listed explicitly here
@@ -22742,6 +22984,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
22742
22984
return LLM_CHAT_TEMPLATE_MEGREZ;
22743
22985
} else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
22744
22986
return LLM_CHAT_TEMPLATE_LLAMA4;
22987
+ } else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
22988
+ return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
22745
22989
}
22746
22990
return LLM_CHAT_TEMPLATE_UNKNOWN;
22747
22991
}
@@ -23160,6 +23404,18 @@ static int32_t llama_chat_apply_template_internal(
23160
23404
ss << message->content;
23161
23405
}
23162
23406
}
23407
+ } else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_MOE) {
23408
+ // tencent/Hunyuan-A13B-Instruct
23409
+ for (auto message : chat) {
23410
+ std::string role(message->role);
23411
+ if (role == "system") {
23412
+ ss << "<|startoftext|>" << message->content << "<|extra_4|>";
23413
+ } else if (role == "assistant") {
23414
+ ss << "<|startoftext|>" << message->content << "<|eos|>";
23415
+ } else {
23416
+ ss << "<|startoftext|>" << message->content << "<|extra_0|>";
23417
+ }
23418
+ }
23163
23419
} else {
23164
23420
// template not supported
23165
23421
return -1;
0 commit comments