@@ -40,7 +40,7 @@ is an estimator object::
40
40
>>> estimators = [('reduce_dim', PCA()), ('clf', SVC())]
41
41
>>> pipe = Pipeline(estimators)
42
42
>>> pipe # doctest: +NORMALIZE_WHITESPACE
43
- Pipeline(steps=[('reduce_dim', PCA(copy=True, iterated_power=4 ,
43
+ Pipeline(steps=[('reduce_dim', PCA(copy=True, iterated_power='auto' ,
44
44
n_components=None, random_state=None, svd_solver='auto', tol=0.0,
45
45
whiten=False)), ('clf', SVC(C=1.0, cache_size=200, class_weight=None,
46
46
coef0=0.0, decision_function_shape=None, degree=3, gamma='auto',
@@ -64,20 +64,20 @@ filling in the names automatically::
64
64
The estimators of a pipeline are stored as a list in the ``steps `` attribute::
65
65
66
66
>>> pipe.steps[0]
67
- ('reduce_dim', PCA(copy=True, iterated_power=4 , n_components=None, random_state=None,
67
+ ('reduce_dim', PCA(copy=True, iterated_power='auto' , n_components=None, random_state=None,
68
68
svd_solver='auto', tol=0.0, whiten=False))
69
69
70
70
and as a ``dict `` in ``named_steps ``::
71
71
72
72
>>> pipe.named_steps['reduce_dim']
73
- PCA(copy=True, iterated_power=4 , n_components=None, random_state=None,
73
+ PCA(copy=True, iterated_power='auto' , n_components=None, random_state=None,
74
74
svd_solver='auto', tol=0.0, whiten=False)
75
75
76
76
Parameters of the estimators in the pipeline can be accessed using the
77
77
``<estimator>__<parameter> `` syntax::
78
78
79
79
>>> pipe.set_params(clf__C=10) # doctest: +NORMALIZE_WHITESPACE
80
- Pipeline(steps=[('reduce_dim', PCA(copy=True, iterated_power=4 ,
80
+ Pipeline(steps=[('reduce_dim', PCA(copy=True, iterated_power='auto' ,
81
81
n_components=None, random_state=None, svd_solver='auto', tol=0.0,
82
82
whiten=False)), ('clf', SVC(C=10, cache_size=200, class_weight=None,
83
83
coef0=0.0, decision_function_shape=None, degree=3, gamma='auto',
@@ -166,7 +166,7 @@ and ``value`` is an estimator object::
166
166
>>> combined = FeatureUnion(estimators)
167
167
>>> combined # doctest: +NORMALIZE_WHITESPACE
168
168
FeatureUnion(n_jobs=1, transformer_list=[('linear_pca', PCA(copy=True,
169
- iterated_power=4 , n_components=None, random_state=None,
169
+ iterated_power='auto' , n_components=None, random_state=None,
170
170
svd_solver='auto', tol=0.0, whiten=False)), ('kernel_pca',
171
171
KernelPCA(alpha=1.0, coef0=1, copy_X=True, degree=3,
172
172
eigen_solver='auto', fit_inverse_transform=False, gamma=None,
@@ -184,7 +184,7 @@ and ignored by setting to ``None``::
184
184
185
185
>>> combined.set_params(kernel_pca=None) # doctest: +NORMALIZE_WHITESPACE
186
186
FeatureUnion(n_jobs=1, transformer_list=[('linear_pca', PCA(copy=True,
187
- iterated_power=4 , n_components=None, random_state=None,
187
+ iterated_power='auto' , n_components=None, random_state=None,
188
188
svd_solver='auto', tol=0.0, whiten=False)), ('kernel_pca', None)],
189
189
transformer_weights=None)
190
190
0 commit comments