File tree Expand file tree Collapse file tree 1 file changed +3
-3
lines changed Expand file tree Collapse file tree 1 file changed +3
-3
lines changed Original file line number Diff line number Diff line change @@ -544,8 +544,8 @@ This can be done by introducing `uninformative priors
544
544
<https://en.wikipedia.org/wiki/Non-informative_prior#Uninformative_priors> `__
545
545
over the hyper parameters of the model.
546
546
The :math: `\ell _{2 }` regularization used in `Ridge Regression `_ is equivalent
547
- to finding a maximum a-postiori solution under a Gaussian prior over the
548
- parameters :math: `w` with precision :math: `\lambda ^- 1 `. Instead of setting
547
+ to finding a maximum a posteriori estimation under a Gaussian prior over the
548
+ parameters :math: `w` with precision :math: `\lambda ^{- 1 } `. Instead of setting
549
549
`\lambda ` manually, it is possible to treat it as a random variable to be
550
550
estimated from the data.
551
551
@@ -601,7 +601,7 @@ remaining hyperparameters are the parameters of the gamma priors over
601
601
*non-informative *. The parameters are estimated by maximizing the *marginal
602
602
log likelihood *.
603
603
604
- By default :math: `\alpha _1 = \alpha _2 = \lambda _1 = \lambda _2 = 1 .e ^{-6 }`.
604
+ By default :math: `\alpha _1 = \alpha _2 = \lambda _1 = \lambda _2 = 10 ^{-6 }`.
605
605
606
606
607
607
.. figure :: ../auto_examples/linear_model/images/sphx_glr_plot_bayesian_ridge_001.png
You can’t perform that action at this time.
0 commit comments