Skip to content

Commit 24964a2

Browse files
authored
Rename variables (neo4j#65)
* Renamed embedding property variable to be more explicit * Rename format_record_function to result_formatter * Changed default_format_record to default_record_formatter * Add tox to gitignore * Rebase * Rename propertyKey and textProperty to vectorProperty
1 parent c531f4e commit 24964a2

27 files changed

+82
-78
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -11,3 +11,4 @@ docs/build/
1111
.python-version
1212
.DS_Store
1313
.venv
14+
.tox/

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -89,7 +89,7 @@ create_vector_index(
8989
driver,
9090
INDEX_NAME,
9191
label="Document",
92-
property="textProperty",
92+
embedding_property="vectorProperty",
9393
dimensions=1536,
9494
similarity_fn="euclidean",
9595
)
@@ -118,7 +118,7 @@ vector = [random() for _ in range(DIMENSION)]
118118
insert_query = (
119119
"MERGE (n:Document {id: $id})"
120120
"WITH n "
121-
"CALL db.create.setNodeVectorProperty(n, 'textProperty', $vector)"
121+
"CALL db.create.setNodeVectorProperty(n, 'vectorProperty', $vector)"
122122
"RETURN n"
123123
)
124124
parameters = {

docs/source/api.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -52,14 +52,14 @@ This section includes retrievers that integrate with databases external to Neo4j
5252
WeaviateNeo4jRetriever
5353
======================
5454

55-
.. autoclass:: neo4j_genai.retrievers.external.weaviate.WeaviateNeo4jRetriever
55+
.. autoclass:: neo4j_genai.retrievers.external.weaviate.weaviate.WeaviateNeo4jRetriever
5656
:members:
5757

5858

5959
PineconeNeo4jRetriever
6060
======================
6161

62-
.. autoclass:: neo4j_genai.retrievers.external.pinecone.PineconeNeo4jRetriever
62+
.. autoclass:: neo4j_genai.retrievers.external.pinecone.pinecone.PineconeNeo4jRetriever
6363
:members:
6464

6565

docs/source/index.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -112,7 +112,7 @@ When creating a vector index, make sure you match the number of dimensions in th
112112
driver,
113113
INDEX_NAME,
114114
label="Document",
115-
property="textProperty",
115+
embedding_property="vectorProperty",
116116
dimensions=1536,
117117
similarity_fn="euclidean",
118118
)
@@ -144,7 +144,7 @@ See below for how to write using Cypher via the Neo4j driver.
144144
insert_query = (
145145
"MERGE (n:Document {id: $id})"
146146
"WITH n "
147-
"CALL db.create.setNodeVectorProperty(n, 'textProperty', $vector)"
147+
"CALL db.create.setNodeVectorProperty(n, 'vectorProperty', $vector)"
148148
"RETURN n"
149149
)
150150
parameters = {

examples/graphrag.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -44,7 +44,7 @@ def formatter(record: neo4j.Record) -> RetrieverResultItem:
4444
driver,
4545
index_name=INDEX,
4646
retrieval_query="with node, score return node.title as title, node.plot as plot",
47-
format_record_function=formatter,
47+
result_formatter=formatter,
4848
embedder=embedder,
4949
)
5050

examples/graphrag_custom_prompt.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -45,7 +45,7 @@ def formatter(record: neo4j.Record) -> RetrieverResultItem:
4545
driver,
4646
index_name=INDEX,
4747
retrieval_query="with node, score return node.title as title, node.plot as plot",
48-
format_record_function=formatter,
48+
result_formatter=formatter,
4949
embedder=embedder,
5050
)
5151

examples/hybrid_cypher_search.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,12 +29,12 @@ def embed_query(self, text: str) -> list[float]:
2929
driver,
3030
INDEX_NAME,
3131
label="Document",
32-
property="propertyKey",
32+
embedding_property="vectorProperty",
3333
dimensions=DIMENSION,
3434
similarity_fn="euclidean",
3535
)
3636
create_fulltext_index(
37-
driver, FULLTEXT_INDEX_NAME, label="Document", node_properties=["propertyKey"]
37+
driver, FULLTEXT_INDEX_NAME, label="Document", node_properties=["vectorProperty"]
3838
)
3939

4040
# Initialize the retriever
@@ -48,7 +48,7 @@ def embed_query(self, text: str) -> list[float]:
4848
insert_query = (
4949
"MERGE (n:Document {id: $id})"
5050
"WITH n "
51-
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
51+
"CALL db.create.setNodeVectorProperty(n, 'vectorProperty', $vector)"
5252
"RETURN n"
5353
)
5454
parameters = {

examples/hybrid_search.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -29,12 +29,12 @@ def embed_query(self, text: str) -> list[float]:
2929
driver,
3030
INDEX_NAME,
3131
label="Document",
32-
property="propertyKey",
32+
embedding_property="vectorProperty",
3333
dimensions=DIMENSION,
3434
similarity_fn="euclidean",
3535
)
3636
create_fulltext_index(
37-
driver, FULLTEXT_INDEX_NAME, label="Document", node_properties=["propertyKey"]
37+
driver, FULLTEXT_INDEX_NAME, label="Document", node_properties=["vectorProperty"]
3838
)
3939

4040
# Initialize the retriever
@@ -45,7 +45,7 @@ def embed_query(self, text: str) -> list[float]:
4545
insert_query = (
4646
"MERGE (n:Document {id: $id})"
4747
"WITH n "
48-
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
48+
"CALL db.create.setNodeVectorProperty(n, 'vectorProperty', $vector)"
4949
"RETURN n"
5050
)
5151
parameters = {

examples/openai_search.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@
2727
driver,
2828
INDEX_NAME,
2929
label="Document",
30-
property="propertyKey",
30+
embedding_property="vectorProperty",
3131
dimensions=DIMENSION,
3232
similarity_fn="cosine",
3333
)
@@ -38,7 +38,7 @@
3838
insert_query = (
3939
"MERGE (n:Document {id: $id})"
4040
"WITH n "
41-
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
41+
"CALL db.create.setNodeVectorProperty(n, 'vectorProperty', $vector)"
4242
"RETURN n"
4343
)
4444
parameters = {

examples/similarity_search_for_text.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ def embed_query(self, text: str) -> list[float]:
2828
driver,
2929
INDEX_NAME,
3030
label="Document",
31-
property="propertyKey",
31+
embedding_property="vectorProperty",
3232
dimensions=DIMENSION,
3333
similarity_fn="euclidean",
3434
)
@@ -41,7 +41,7 @@ def embed_query(self, text: str) -> list[float]:
4141
insert_query = (
4242
"MERGE (n:Document {id: $id})"
4343
"WITH n "
44-
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
44+
"CALL db.create.setNodeVectorProperty(n, 'vectorProperty', $vector)"
4545
"RETURN n"
4646
)
4747
parameters = {

0 commit comments

Comments
 (0)