You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
1. In the `gene_space` parameter, any `None` value (regardless of its index or axis), is replaced by a randomly generated number based on the 3 parameters `init_range_low`, `init_range_high`, and `gene_type`. So, the `None` value in `[..., None, ...]` or `[..., [..., None, ...], ...]` are replaced with random values. This gives more freedom in building the space of values for the genes.
2. All the numbers passed to the `gene_space` parameter are casted to the type specified in the `gene_type` parameter.
3. The `numpy.uint` data type is supported for the parameters that accept integer values.
4. In the `pygad.kerasga` module, the `model_weights_as_vector()` function uses the `trainable` attribute of the model's layers to only return the trainable weights in the network. So, only the trainable layers with their `trainable` attribute set to `True` (`trainable=True`), which is the default value, have their weights evolved. All non-trainable layers with the `trainable` attribute set to `False` (`trainable=False`) will not be evolved. Thanks to [Prof. Tamer A. Farrag](https://github.com/tfarrag2000) for pointing about that at [GitHub](ahmedfgad/KerasGA#1).
0 commit comments