1
- .. _header-n293 :
1
+ .. _header-n298 :
2
2
3
3
Release History
4
4
===============
5
5
6
- .. _header-n295 :
6
+ .. _header-n300 :
7
7
8
8
PyGAD 1.0.17
9
9
------------
@@ -15,7 +15,7 @@ Release Date: 15 April 2020
15
15
values for the solutions. This allows the project to be customized to
16
16
any problem by building the right fitness function.
17
17
18
- .. _header-n300 :
18
+ .. _header-n305 :
19
19
20
20
PyGAD 1.0.20
21
21
-------------
@@ -35,7 +35,7 @@ Release Date: 4 May 2020
35
35
4. The code object ``__code__ `` of the passed fitness function is
36
36
checked to ensure it has the right number of parameters.
37
37
38
- .. _header-n311 :
38
+ .. _header-n316 :
39
39
40
40
PyGAD 2.0.0
41
41
------------
@@ -61,7 +61,7 @@ Release Date: 13 May 2020
61
61
is called after each generation. This helps the user to do
62
62
post-processing or debugging operations after each generation.
63
63
64
- .. _header-n322 :
64
+ .. _header-n327 :
65
65
66
66
PyGAD 2.1.0
67
67
-----------
@@ -97,7 +97,7 @@ Release Date: 14 May 2020
97
97
98
98
2. Mutation is applied independently for the genes.
99
99
100
- .. _header-n337 :
100
+ .. _header-n342 :
101
101
102
102
PyGAD 2.2.1
103
103
-----------
@@ -107,7 +107,7 @@ Release Date: 17 May 2020
107
107
1. Adding 2 extra modules (pygad.nn and pygad.gann) for building and
108
108
training neural networks with the genetic algorithm.
109
109
110
- .. _header-n342 :
110
+ .. _header-n347 :
111
111
112
112
PyGAD 2.2.2
113
113
-----------
@@ -141,7 +141,7 @@ The new gene value is **0.1**.
141
141
``crossover_type `` parameters of the pygad.GA class constructor. When
142
142
``None ``, this means the step is bypassed and has no action.
143
143
144
- .. _header-n355 :
144
+ .. _header-n360 :
145
145
146
146
PyGAD 2.3.0
147
147
-----------
@@ -166,7 +166,7 @@ Release date: 1 June 2020
166
166
6. The name of the ``pygad.nn.train_network() `` function is changed to
167
167
``pygad.nn.train() ``.
168
168
169
- .. _header-n370 :
169
+ .. _header-n375 :
170
170
171
171
PyGAD 2.4.0
172
172
-----------
@@ -204,7 +204,7 @@ through more generations because no further improvement is possible.
204
204
if ga_instance.best_solution()[1 ] >= 70 :
205
205
return " stop"
206
206
207
- .. _header-n380 :
207
+ .. _header-n385 :
208
208
209
209
PyGAD 2.5.0
210
210
-----------
@@ -300,7 +300,7 @@ If the user did not assign the initial population to the
300
300
randomly based on the ``gene_space `` parameter. Moreover, the mutation
301
301
is applied based on this parameter.
302
302
303
- .. _header-n408 :
303
+ .. _header-n413 :
304
304
305
305
PyGAD 2.6.0
306
306
------------
@@ -318,7 +318,7 @@ Release Date: 6 August 2020
318
318
``on_fitness ``, ``on_parents ``, ``on_crossover ``, ``on_mutation ``,
319
319
``on_generation ``, and ``on_stop ``.
320
320
321
- .. _header-n417 :
321
+ .. _header-n422 :
322
322
323
323
PyGAD 2.7.0
324
324
-----------
@@ -377,7 +377,7 @@ parameter or set it to ``"classification"`` (default value). In this
377
377
case, the activation function of the last layer can be set to any type
378
378
(e.g. softmax).
379
379
380
- .. _header-n441 :
380
+ .. _header-n446 :
381
381
382
382
PyGAD 2.7.1
383
383
-----------
@@ -387,7 +387,7 @@ Release Date: 11 September 2020
387
387
1. A bug fix when the ``problem_type `` argument is set to
388
388
``regression ``.
389
389
390
- .. _header-n446 :
390
+ .. _header-n451 :
391
391
392
392
PyGAD 2.7.2
393
393
-----------
@@ -397,7 +397,7 @@ Release Date: 14 September 2020
397
397
1. Bug fix to support building and training regression neural networks
398
398
with multiple outputs.
399
399
400
- .. _header-n451 :
400
+ .. _header-n456 :
401
401
402
402
PyGAD 2.8.0
403
403
-----------
@@ -407,7 +407,20 @@ Release Date: 20 September 2020
407
407
1. Support of a new module named ``kerasga `` so that the Keras models
408
408
can be trained by the genetic algorithm using PyGAD.
409
409
410
- .. _header-n586 :
410
+ .. _header-n597 :
411
+
412
+ PyGAD 2.8.1
413
+ -----------
414
+
415
+ Release Date: 3 October 2020
416
+
417
+ 1. Bug fix in applying the crossover operation when the
418
+ ``crossover_probability `` parameter is used. Thanks to `Eng. Hamada
419
+ Kassem, Research and Teaching Assistant, Construction Engineering and
420
+ Management, Faculty of Engineering, Alexandria University,
421
+ Egypt <https://www.linkedin.com/in/hamadakassem> `__.
422
+
423
+ .. _header-n596 :
411
424
412
425
PyGAD Projects at GitHub
413
426
========================
@@ -417,7 +430,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
417
430
open-source GitHub projects. A brief note about these projects is given
418
431
in the next subsections.
419
432
420
- .. _header-n453 :
433
+ .. _header-n463 :
421
434
422
435
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
423
436
--------------------------------------------------------------------------------
@@ -428,7 +441,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
428
441
is the first project which is an open-source Python 3 project for
429
442
implementing the genetic algorithm based on NumPy.
430
443
431
- .. _header-n456 :
444
+ .. _header-n466 :
432
445
433
446
`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
434
447
----------------------------------------------------
@@ -442,7 +455,7 @@ neural network without using a training algorithm. Currently, it only
442
455
supports classification and later regression will be also supported.
443
456
Moreover, only one class is supported per sample.
444
457
445
- .. _header-n459 :
458
+ .. _header-n469 :
446
459
447
460
`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
448
461
--------------------------------------------------------------
@@ -455,7 +468,7 @@ projects
455
468
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
456
469
and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
457
470
458
- .. _header-n462 :
471
+ .. _header-n472 :
459
472
460
473
`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
461
474
----------------------------------------------------
@@ -467,7 +480,7 @@ convolutional neural networks using NumPy. The purpose of this project
467
480
is to only implement the **forward pass ** of a convolutional neural
468
481
network without using a training algorithm.
469
482
470
- .. _header-n465 :
483
+ .. _header-n475 :
471
484
472
485
`CNNGenetic <https://github.com/ahmedfgad/CNNGenetic >`__
473
486
--------------------------------------------------------
@@ -479,7 +492,7 @@ convolutional neural networks using the genetic algorithm. It uses the
479
492
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
480
493
project for building the genetic algorithm.
481
494
482
- .. _header-n468 :
495
+ .. _header-n478 :
483
496
484
497
Submitting Issues
485
498
=================
@@ -496,7 +509,7 @@ is not working properly or to ask for questions.
496
509
If this is not a proper option for you, then check the **Contact Us **
497
510
section for more contact details.
498
511
499
- .. _header-n472 :
512
+ .. _header-n482 :
500
513
501
514
Ask for Feature
502
515
===============
@@ -513,7 +526,7 @@ to ahmed.f.gad@gmail.com.
513
526
514
527
Also check the **Contact Us ** section for more contact details.
515
528
516
- .. _header-n476 :
529
+ .. _header-n486 :
517
530
518
531
Projects Built using PyGAD
519
532
==========================
@@ -532,15 +545,15 @@ Within your message, please send the following details:
532
545
533
546
- Preferably, a link that directs the readers to your project
534
547
535
- .. _header-n487 :
548
+ .. _header-n497 :
536
549
537
550
For More Information
538
551
====================
539
552
540
553
There are different resources that can be used to get started with the
541
554
genetic algorithm and building it in Python.
542
555
543
- .. _header-n489 :
556
+ .. _header-n499 :
544
557
545
558
Tutorial: Implementing Genetic Algorithm in Python
546
559
--------------------------------------------------
@@ -564,7 +577,7 @@ good resource to start with coding the genetic algorithm.
564
577
565
578
|image0 |
566
579
567
- .. _header-n500 :
580
+ .. _header-n510 :
568
581
569
582
Tutorial: Introduction to Genetic Algorithm
570
583
-------------------------------------------
@@ -583,7 +596,7 @@ which is available at these links:
583
596
584
597
|image1 |
585
598
586
- .. _header-n510 :
599
+ .. _header-n520 :
587
600
588
601
Tutorial: Build Neural Networks in Python
589
602
-----------------------------------------
@@ -603,7 +616,7 @@ available at these links:
603
616
604
617
|image2 |
605
618
606
- .. _header-n520 :
619
+ .. _header-n530 :
607
620
608
621
Tutorial: Optimize Neural Networks with Genetic Algorithm
609
622
---------------------------------------------------------
@@ -623,7 +636,7 @@ available at these links:
623
636
624
637
|image3 |
625
638
626
- .. _header-n530 :
639
+ .. _header-n540 :
627
640
628
641
Tutorial: Building CNN in Python
629
642
--------------------------------
@@ -649,7 +662,7 @@ good resource to start with coding CNNs.
649
662
650
663
|image4 |
651
664
652
- .. _header-n543 :
665
+ .. _header-n553 :
653
666
654
667
Tutorial: Derivation of CNN from FCNN
655
668
-------------------------------------
@@ -668,7 +681,7 @@ which is available at these links:
668
681
669
682
|image5 |
670
683
671
- .. _header-n553 :
684
+ .. _header-n563 :
672
685
673
686
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
674
687
--------------------------------------------------------------------------
@@ -694,7 +707,7 @@ Find the book at these links:
694
707
.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
695
708
:alt:
696
709
697
- .. _header-n568 :
710
+ .. _header-n578 :
698
711
699
712
Contact Us
700
713
==========
0 commit comments