Skip to content

[ENH] Added Test Cases For convolution based-Classification #2691

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 6 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions aeon/classification/convolution_based/tests/test_hydra.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
"""Hydra classifier test code."""

import numpy as np
import pytest

from aeon.classification.convolution_based import HydraClassifier
from aeon.datasets import load_basic_motions, load_unit_test
from aeon.utils.validation._dependencies import _check_soft_dependencies


@pytest.mark.skipif(
not _check_soft_dependencies(["torch"], severity="none"),
reason="pytorch soft dependency not found.",
)
def test_hydra_univariate():
"""Test of Hydra classifier on univariate."""
X_train, y_train = load_unit_test(split="train")
X_test, y_test = load_unit_test(split="test")

clf = HydraClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)


@pytest.mark.skipif(
not _check_soft_dependencies(["torch"], severity="none"),
reason="pytorch soft dependency not found.",
)
def test_hydra_multivariate():
"""Test of Hydra classifier on multivariate."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")

clf = HydraClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)
42 changes: 42 additions & 0 deletions aeon/classification/convolution_based/tests/test_minirocket.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
"""MiniRocket classifier test code."""

import numpy as np

from aeon.classification.convolution_based import MiniRocketClassifier
from aeon.datasets import load_basic_motions, load_unit_test


def test_minirocket_univariate():
"""Test of MiniRocket classifier on univariate."""
X_train, y_train = load_unit_test(split="train")
X_test, y_test = load_unit_test(split="test")

clf = MiniRocketClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)


def test_minirocket_multivariate():
"""Test of MiniRocket classifier on multivariate."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")

clf = MiniRocketClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)
52 changes: 52 additions & 0 deletions aeon/classification/convolution_based/tests/test_mr_hydra.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,52 @@
"""MultiRocketHydra classifier test code."""

import numpy as np
import pytest

from aeon.classification.convolution_based import MultiRocketHydraClassifier
from aeon.datasets import load_basic_motions, load_unit_test
from aeon.utils.validation._dependencies import _check_soft_dependencies


@pytest.mark.skipif(
not _check_soft_dependencies(["torch"], severity="none"),
reason="pytorch soft dependency not found.",
)
def test_mr_hydra_univariate():
"""Test of MultiRocketHydra classifier on univariate."""
X_train, y_train = load_unit_test(split="train")
X_test, y_test = load_unit_test(split="test")

clf = MultiRocketHydraClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)


@pytest.mark.skipif(
not _check_soft_dependencies(["torch"], severity="none"),
reason="pytorch soft dependency not found.",
)
def test_mr_hydra_multivariate():
"""Test of MultiRocketHydra classifier on multivariate."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")

clf = MultiRocketHydraClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)
42 changes: 42 additions & 0 deletions aeon/classification/convolution_based/tests/test_multirocket.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
"""MultiRocket classifier test code."""

import numpy as np

from aeon.classification.convolution_based import MultiRocketClassifier
from aeon.datasets import load_basic_motions, load_unit_test


def test_multirocket_univariate():
"""Test of MultiRocket classifier on univariate."""
X_train, y_train = load_unit_test(split="train")
X_test, y_test = load_unit_test(split="test")

clf = MultiRocketClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)


def test_multirocket_multivariate():
"""Test of MultiRocket classifier on multivariate."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")

clf = MultiRocketClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)
42 changes: 42 additions & 0 deletions aeon/classification/convolution_based/tests/test_rocket.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
"""RandOm Convolutional KErnel Transform (Rocket) classifier test code."""

import numpy as np

from aeon.classification.convolution_based import RocketClassifier
from aeon.datasets import load_basic_motions, load_unit_test


def test_rocket_univariate():
"""Test of Rocket on univariate."""
X_train, y_train = load_unit_test(split="train")
X_test, y_test = load_unit_test(split="test")

clf = RocketClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)


def test_rocket_multivariate():
"""Test of Rocket on multivariate."""
X_train, y_train = load_basic_motions(split="train")
X_test, y_test = load_basic_motions(split="test")

clf = RocketClassifier(random_state=0)

clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
y_proba = clf.predict_proba(X_test)

assert clf.is_fitted
assert y_pred.shape == (X_test.shape[0],)
assert set(y_pred).issubset(set(y_train))
assert y_proba.shape == (X_test.shape[0], len(np.unique(y_train)))
assert np.all(y_proba >= 0) and np.all(y_proba <= 1)