@@ -206,23 +206,9 @@ def _fit_predict(self, X: np.ndarray, y: Optional[np.ndarray] = None) -> np.ndar
206
206
point_anomaly_scores = self ._inner_predict (_X , padding )
207
207
return point_anomaly_scores
208
208
209
- def _inner_predict (self , X : np .ndarray , padding : int ) -> np .ndarray :
210
-
211
- anomaly_scores = self ._predict_proba (X )
212
-
213
- point_anomaly_scores = reverse_windowing (
214
- anomaly_scores , self .window_size , np .nanmean , self .stride , padding
215
- )
216
-
217
- point_anomaly_scores = (point_anomaly_scores - point_anomaly_scores .min ()) / (
218
- point_anomaly_scores .max () - point_anomaly_scores .min ()
219
- )
220
-
221
- return point_anomaly_scores
222
-
223
- def _predict_proba (self , X ):
209
+ def _inner_predict (self , X : np .ndarray , padding : int ) -> np .ndarray :
224
210
"""
225
- Predicts the probability of anomalies for the input data.
211
+ Predict the anomaly score for each time-point in the input data.
226
212
227
213
Parameters
228
214
----------
@@ -257,6 +243,14 @@ def _predict_proba(self, X):
257
243
y_scores [:, idx ] = scores
258
244
259
245
# Average the scores to get the final score for each time series
260
- y_scores = y_scores .mean (axis = 1 )
246
+ anomaly_scores = y_scores .mean (axis = 1 )
247
+
248
+ point_anomaly_scores = reverse_windowing (
249
+ anomaly_scores , self .window_size , np .nanmean , self .stride , padding
250
+ )
251
+
252
+ point_anomaly_scores = (point_anomaly_scores - point_anomaly_scores .min ()) / (
253
+ point_anomaly_scores .max () - point_anomaly_scores .min ()
254
+ )
261
255
262
- return y_scores
256
+ return point_anomaly_scores
0 commit comments