Skip to content

Commit 1b036bd

Browse files
committed
moved Attributes above References and Examples, updated path of collection based rockad implementation
1 parent 7feab8f commit 1b036bd

File tree

1 file changed

+10
-10
lines changed
  • aeon/anomaly_detection/series/distance_based

1 file changed

+10
-10
lines changed

aeon/anomaly_detection/series/distance_based/_rockad.py

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -26,7 +26,7 @@ class ROCKAD(BaseSeriesAnomalyDetector):
2626
After windowing, the data gets transformed into the ROCKET feature space.
2727
Then the windows are compared based on the feature space by
2828
finding the nearest neighbours. Whole-series based ROCKAD as proposed in
29-
[1]_ can be found at aeon/anomaly_detection/whole_series/_rockad.py
29+
[1]_ can be found at aeon/anomaly_detection/collection/_rockad.py
3030
3131
This class supports both univariate and multivariate time series and
3232
provides options for normalizing features, applying power transformations,
@@ -55,6 +55,15 @@ class ROCKAD(BaseSeriesAnomalyDetector):
5555
random_state : int, default=42
5656
Random seed for reproducibility.
5757
58+
Attributes
59+
----------
60+
rocket_transformer_ : Optional[Rocket]
61+
Instance of the ROCKET transformer used to extract features, set after fitting.
62+
list_baggers_ : Optional[list[NearestNeighbors]]
63+
List containing k-NN estimators used for anomaly scoring, set after fitting.
64+
power_transformer_ : PowerTransformer
65+
Transformer used to apply power transformation to the features.
66+
5867
References
5968
----------
6069
.. [1] Theissler, A., Wengert, M., Gerschner, F. (2023).
@@ -78,15 +87,6 @@ class ROCKAD(BaseSeriesAnomalyDetector):
7887
0.43652154 0.43652154 0.43652154 0.43652154 0.43652154 0.43652154
7988
0.43652154 0.43652154 0.43652154 0.52382585 0.65200875 0.80313368
8089
0.85194344 1. ])
81-
82-
Attributes
83-
----------
84-
rocket_transformer_ : Optional[Rocket]
85-
Instance of the ROCKET transformer used to extract features, set after fitting.
86-
list_baggers_ : Optional[list[NearestNeighbors]]
87-
List containing k-NN estimators used for anomaly scoring, set after fitting.
88-
power_transformer_ : PowerTransformer
89-
Transformer used to apply power transformation to the features.
9090
"""
9191

9292
_tags = {

0 commit comments

Comments
 (0)