@@ -26,7 +26,7 @@ class ROCKAD(BaseSeriesAnomalyDetector):
26
26
After windowing, the data gets transformed into the ROCKET feature space.
27
27
Then the windows are compared based on the feature space by
28
28
finding the nearest neighbours. Whole-series based ROCKAD as proposed in
29
- [1]_ can be found at aeon/anomaly_detection/whole_series /_rockad.py
29
+ [1]_ can be found at aeon/anomaly_detection/collection /_rockad.py
30
30
31
31
This class supports both univariate and multivariate time series and
32
32
provides options for normalizing features, applying power transformations,
@@ -55,6 +55,15 @@ class ROCKAD(BaseSeriesAnomalyDetector):
55
55
random_state : int, default=42
56
56
Random seed for reproducibility.
57
57
58
+ Attributes
59
+ ----------
60
+ rocket_transformer_ : Optional[Rocket]
61
+ Instance of the ROCKET transformer used to extract features, set after fitting.
62
+ list_baggers_ : Optional[list[NearestNeighbors]]
63
+ List containing k-NN estimators used for anomaly scoring, set after fitting.
64
+ power_transformer_ : PowerTransformer
65
+ Transformer used to apply power transformation to the features.
66
+
58
67
References
59
68
----------
60
69
.. [1] Theissler, A., Wengert, M., Gerschner, F. (2023).
@@ -78,15 +87,6 @@ class ROCKAD(BaseSeriesAnomalyDetector):
78
87
0.43652154 0.43652154 0.43652154 0.43652154 0.43652154 0.43652154
79
88
0.43652154 0.43652154 0.43652154 0.52382585 0.65200875 0.80313368
80
89
0.85194344 1. ])
81
-
82
- Attributes
83
- ----------
84
- rocket_transformer_ : Optional[Rocket]
85
- Instance of the ROCKET transformer used to extract features, set after fitting.
86
- list_baggers_ : Optional[list[NearestNeighbors]]
87
- List containing k-NN estimators used for anomaly scoring, set after fitting.
88
- power_transformer_ : PowerTransformer
89
- Transformer used to apply power transformation to the features.
90
90
"""
91
91
92
92
_tags = {
0 commit comments