You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/examples/Classification.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Classification">
475
475
<h1>Classification<aclass="headerlink" href="#Classification" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="7e5febbae9be4cb49a22890f1a8ef47d" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="6600b9179aab4842916326eb2be34ace" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="f6e3e691151b483e929e61b99dbcee1c" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="812bc9d98efe46aeb33893afab590964" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
478
478
</div><p>You will find here the application of DA methods from the ADAPT package on a simple two dimensional DA classification problem.</p>
479
479
<p>First we import packages needed in the following. We will use <codeclass="docutils literal notranslate"><spanclass="pre">matplotlib</span><spanclass="pre">Animation</span></code> tools in order to get a visual understanding of the mselected methods:</p>
Copy file name to clipboardExpand all lines: docs/examples/Multi_fidelity.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Multi-Fidelity">
475
475
<h1>Multi-Fidelity<aclass="headerlink" href="#Multi-Fidelity" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="39fb27f4651d4fbf9ef92e084815a7a7" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1Cc9TVY_Tl_boVzZDNisQnqe6Qx78svqe?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="16a9427b4d9a458a893dff0faa024dd9" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Multi_fidelity.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="0cac1e6eb3184ea0834d19952882e711" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1Cc9TVY_Tl_boVzZDNisQnqe6Qx78svqe?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="73a8c4f9a862449486537bb06f07fc54" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Multi_fidelity.ipynb">View on GitHub</a></p>
478
478
</div><p>The following example is a 1D regression multi-fidelity issue. Blue points are low fidelity observations and orange points are high fidelity observations. The goal is to use both datasets to learn the task on the [0, 1] interval.</p>
479
479
<p>To tackle this challenge, we use here the parameter-based method: <aclass="reference external" href="#RegularTransferNN">RegularTransferNN</a></p>
Copy file name to clipboardExpand all lines: docs/examples/Regression.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Toy-Regression">
475
475
<h1>Toy Regression<aclass="headerlink" href="#Toy-Regression" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="e424096f38164c73a44b40c56b827341" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1adhqoV6b0uEavLDmMfkiwtRjam0DrXux?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="ce200f7c0da44b108ad1b64974134025" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Regression.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="9d9b4f0cec3a41f69a5435ed1499ab44" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1adhqoV6b0uEavLDmMfkiwtRjam0DrXux?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="c188e65dbb27424ba7c48578f576faea" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Regression.ipynb">View on GitHub</a></p>
478
478
</div><p>You will find here the application of DA methods from the ADAPT package on a simple one dimensional DA regression problem.</p>
479
479
<p>First we import packages needed in the following. We will use <codeclass="docutils literal notranslate"><spanclass="pre">matplotlib</span><spanclass="pre">Animation</span></code> tools in order to get a visual understanding of the selected methods:</p>
Copy file name to clipboardExpand all lines: docs/examples/Rotation.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Rotation">
475
475
<h1>Rotation<aclass="headerlink" href="#Rotation" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="51da7c6cd45d41e082eaa888754ce460" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1XePW12UF80PKzvLu9cyRJKWQoZIxk_J2?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="452537d909714f6aa4ad1bb8a228b1f3" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Rotation.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="778e3c0c5937414bbd4ee58cd674bf13" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1XePW12UF80PKzvLu9cyRJKWQoZIxk_J2?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="f48813438b444a7889577f48bc23cc30" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Rotation.ipynb">View on GitHub</a></p>
Copy file name to clipboardExpand all lines: docs/examples/Two_moons.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Two-Moons">
475
475
<h1>Two Moons<aclass="headerlink" href="#Two-Moons" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="92321d0ef1d54e1fb424a825284362a2" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1Tz-TIkHI8ashHP90Im6D3tMjZ3lkR7s6?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="698097286ed34c5a8ee3b33e9d257483" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Two_moons.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="876971dc92fe45628d981ebe10af7557" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1Tz-TIkHI8ashHP90Im6D3tMjZ3lkR7s6?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="999d9110c1c64b2d81a61fe6e45ecfb1" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Two_moons.ipynb">View on GitHub</a></p>
478
478
</div><p>The following example is a binary classification domain adaptation issue. The goal is to learn the classification task on the target data (black points) knowing only the labels on the source data (red and blue points).</p>
Copy file name to clipboardExpand all lines: docs/examples/sample_bias.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Sample-Bias-1D">
475
475
<h1>Sample Bias 1D<aclass="headerlink" href="#Sample-Bias-1D" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="8723a87874614bc58ae515ececb61acf" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1Hbg2kDXKjKzeQKJSwxzaV7pwbmORhyA3?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="7d64571dcbb744d595082f450917c658" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="bd95462930c4459ea7a8310e583fac8a" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/1Hbg2kDXKjKzeQKJSwxzaV7pwbmORhyA3?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="789210a76ab94cc287183c31d7c13c82" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias.ipynb">View on GitHub</a></p>
478
478
</div><p>The following example is a 1D regression domain adaptation issue. The goal is to learn the regression task on the target data (orange points) knowing only the labels on the source data (blue points).</p>
479
479
<p>In this example, there is a sample bias between the source and target datasets. The sources are drawn according to a gaussian distribution whereas the targets are uniformly distributed.</p>
Copy file name to clipboardExpand all lines: docs/examples/sample_bias_2d.html
+2-2Lines changed: 2 additions & 2 deletions
Original file line number
Diff line number
Diff line change
@@ -473,8 +473,8 @@
473
473
</style>
474
474
<sectionid="Sample-Bias-2D">
475
475
<h1>Sample Bias 2D<aclass="headerlink" href="#Sample-Bias-2D" title="Permalink to this headline"></a></h1>
476
-
<divclass="btn btn-notebook" role="button"><p><imgalt="fead1e1875104bcb8654d3e472bdcc44" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/12_9rgPXobyeaKYlXh_fJPNfrbODdvuHY?usp=sharing">Run in Google Colab</a></p>
477
-
</div><divclass="btn btn-notebook" role="button"><p><imgalt="8ef93cbba3f24eb1aa290c0503b623f8" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias_2d.ipynb">View on GitHub</a></p>
476
+
<divclass="btn btn-notebook" role="button"><p><imgalt="13e94fc14b224b7f9e54f3e61db6bf29" src="../_images/colab_logo_32px.png" /><aclass="reference external" href="https://colab.research.google.com/drive/12_9rgPXobyeaKYlXh_fJPNfrbODdvuHY?usp=sharing">Run in Google Colab</a></p>
477
+
</div><divclass="btn btn-notebook" role="button"><p><imgalt="eddb836d9c63411184770811609f59c1" src="../_images/github_logo_32px.png" /><aclass="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/sample_bias_2d.ipynb">View on GitHub</a></p>
478
478
</div><p>The following example is a 2D regression domain adaptation issue. The goal is to learn the regression task on the target data (orange points) knowing only the labels on the source data (blue points).</p>
479
479
<p>In this example, there is a sample bias between the source and target datasets. The sources are mostly located in X1=0 whereas the targets are uniformly distributed.</p>
0 commit comments