|
15 | 15 | import transfer_tree as TL
|
16 | 16 |
|
17 | 17 | methods = [
|
| 18 | + 'relab', |
18 | 19 | 'ser',
|
19 | 20 | 'strut',
|
20 | 21 | 'ser_nr',
|
| 22 | + 'ser_nr_lambda', |
| 23 | + 'strut_nd', |
| 24 | + 'strut_lambda', |
| 25 | + 'strut_lambda_np' |
21 | 26 | # 'strut_hi'
|
22 | 27 | ]
|
23 | 28 | labels = [
|
24 |
| - 'SER', |
25 |
| - 'STRUT', |
26 |
| - 'SER$^{*}$', |
| 29 | + 'relab', |
| 30 | + '$SER$', |
| 31 | + '$STRUT$', |
| 32 | + '$SER_{NP}$', |
| 33 | + '$SER_{NP}(\lambda)$', |
| 34 | + '$STRUT_{ND}$', |
| 35 | + '$STRUT(\lambda)$', |
| 36 | + '$STRUT_{NP}(\lambda)$' |
27 | 37 | # 'STRUT$^{*}$',
|
28 |
| - 'STRUT$^{*}$', |
| 38 | + #'STRUT$^{*}$', |
29 | 39 | ]
|
30 | 40 |
|
31 | 41 | np.random.seed(0)
|
|
76 | 86 | #transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,Xt=Xt,yt=yt)
|
77 | 87 |
|
78 | 88 | for method in methods:
|
| 89 | + Nkmin = sum(yt == 0 ) |
| 90 | + root_source_values = clf_source.tree_.value[0].reshape(-1) |
| 91 | + props_s = root_source_values |
| 92 | + props_s = props_s / sum(props_s) |
| 93 | + props_t = np.zeros(props_s.size) |
| 94 | + for k in range(props_s.size): |
| 95 | + props_t[k] = np.sum(yt == k) / yt.size |
| 96 | + |
| 97 | + coeffs = np.divide(props_t, props_s) |
| 98 | + |
79 | 99 | clf_transfer = copy.deepcopy(clf_source)
|
| 100 | + if method == 'relab': |
| 101 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="") |
| 102 | + transferred_dt.fit(Xt,yt) |
80 | 103 | if method == 'ser':
|
81 |
| - transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,Xt=Xt,yt=yt,algo="ser") |
82 |
| - transferred_dt._ser(Xt, yt, node=0, original_ser=True) |
| 104 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="ser") |
| 105 | + transferred_dt.fit(Xt,yt) |
| 106 | + #transferred_dt._ser(Xt, yt, node=0, original_ser=True) |
83 | 107 | #ser.SER(0, clf_transfer, Xt, yt, original_ser=True)
|
84 | 108 | if method == 'ser_nr':
|
85 |
| - transferred_dt._ser(Xt, yt,node=0,original_ser=False,no_red_on_cl=True,cl_no_red=[0],ext_cond=True) |
| 109 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="ser") |
| 110 | + transferred_dt._ser(Xt, yt,node=0,original_ser=False,no_red_on_cl=True,cl_no_red=[0]) |
| 111 | + if method == 'ser_nr_lambda': |
| 112 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="ser") |
| 113 | + transferred_dt._ser(Xt, yt,node=0,original_ser=False,no_red_on_cl=True,cl_no_red=[0], |
| 114 | + leaf_loss_quantify=True,leaf_loss_threshold=0.5, |
| 115 | + root_source_values=root_source_values,Nkmin=Nkmin,coeffs=coeffs) |
86 | 116 | #ser.SER(0, clf_transfer, Xt, yt,original_ser=False,no_red_on_cl=True,cl_no_red=[0],ext_cond=True)
|
87 | 117 | if method == 'strut':
|
88 |
| - transferred_dt._strut(Xt, yt,node=0) |
| 118 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="strut") |
| 119 | + transferred_dt.fit(Xt,yt) |
| 120 | + #transferred_dt._strut(Xt, yt,node=0) |
| 121 | + if method == 'strut_nd': |
| 122 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="strut") |
| 123 | + transferred_dt._strut(Xt, yt,node=0,use_divergence=False) |
| 124 | + if method == 'strut_lambda': |
| 125 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="strut") |
| 126 | + transferred_dt._strut(Xt, yt,node=0,adapt_prop=True,root_source_values=root_source_values, |
| 127 | + Nkmin=Nkmin,coeffs=coeffs) |
| 128 | + if method == 'strut_lambda_np': |
| 129 | + transferred_dt = TL.TransferTreeClassifier(estimator=clf_transfer,algo="strut") |
| 130 | + transferred_dt._strut(Xt, yt,node=0,adapt_prop=False,no_prune_on_cl=True,cl_no_prune=[0], |
| 131 | + leaf_loss_quantify=False,leaf_loss_threshold=0.5,no_prune_with_translation=False, |
| 132 | + root_source_values=root_source_values,Nkmin=Nkmin,coeffs=coeffs) |
89 | 133 | #if method == 'strut_hi':
|
90 | 134 | #transferred_dt._strut(Xt, yt,node=0,no_prune_on_cl=False,adapt_prop=True,coeffs=[0.2, 1])
|
91 | 135 | #strut.STRUT(clf_transfer, 0, Xt, yt, Xt, yt,pruning_updated_node=True,no_prune_on_cl=False,adapt_prop=True,simple_weights=False,coeffs=[0.2, 1])
|
|
96 | 140 | #clfs.append(clf_transfer)
|
97 | 141 | scores.append(score)
|
98 | 142 |
|
99 |
| -## Plot decision functions |
100 |
| -# |
101 |
| -## Data on which to plot source |
102 |
| -#x_min, x_max = Xs[:, 0].min() - 1, Xs[:, 0].max() + 1 |
103 |
| -#y_min, y_max = Xs[:, 1].min() - 1, Xs[:, 1].max() + 1 |
104 |
| -#xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), |
105 |
| -# np.arange(y_min, y_max, plot_step)) |
106 |
| -## Plot source model |
107 |
| -#Z = clf_source.predict(np.c_[xx.ravel(), yy.ravel()]) |
108 |
| -#Z = Z.reshape(xx.shape) |
109 |
| -#fig, ax = plt.subplots(nrows=1, ncols=len(methods) + 1, figsize=(13, 3)) |
110 |
| -#ax[0].contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8) |
111 |
| -#ax[0].scatter(Xs[0, 0], Xs[0, 1], |
112 |
| -# marker='o', |
113 |
| -# edgecolor='black', |
114 |
| -# color='white', |
115 |
| -# label='source data', |
116 |
| -# ) |
117 |
| -#ax[0].scatter(Xs[:ns_perclass, 0], Xs[:ns_perclass, 1], |
118 |
| -# marker='o', |
119 |
| -# edgecolor='black', |
120 |
| -# color='blue', |
121 |
| -# ) |
122 |
| -#ax[0].scatter(Xs[ns_perclass:, 0], Xs[ns_perclass:, 1], |
123 |
| -# marker='o', |
124 |
| -# edgecolor='black', |
125 |
| -# color='red', |
126 |
| -# ) |
127 |
| -#ax[0].set_title('Model: Source\nAcc on source data: {:.2f}\nAcc on target data: {:.2f}'.format(score_src_src, score_src_trgt), |
128 |
| -# fontsize=11) |
129 |
| -#ax[0].legend() |
130 |
| -# |
131 |
| -## Data on which to plot target |
132 |
| -#x_min, x_max = Xt[:, 0].min() - 1, Xt[:, 0].max() + 1 |
133 |
| -#y_min, y_max = Xt[:, 1].min() - 1, Xt[:, 1].max() + 1 |
134 |
| -#xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), |
135 |
| -# np.arange(y_min, y_max, plot_step)) |
136 |
| -## Plot transfer models |
137 |
| -#for i, (method, label, score) in enumerate(zip(methods, labels, scores)): |
138 |
| -# clf_transfer = clfs[i] |
139 |
| -# Z_transfer = clf_transfer.predict(np.c_[xx.ravel(), yy.ravel()]) |
140 |
| -# Z_transfer = Z_transfer.reshape(xx.shape) |
141 |
| -# ax[i + 1].contourf(xx, yy, Z_transfer, cmap=plt.cm.coolwarm, alpha=0.8) |
142 |
| -# ax[i + 1].scatter(Xt[0, 0], Xt[0, 1], |
143 |
| -# marker='o', |
144 |
| -# edgecolor='black', |
145 |
| -# color='white', |
146 |
| -# label='target data', |
147 |
| -# ) |
148 |
| -# ax[i + 1].scatter(Xt[:nt_0, 0], Xt[:nt_0, 1], |
149 |
| -# marker='o', |
150 |
| -# edgecolor='black', |
151 |
| -# color='blue', |
152 |
| -# ) |
153 |
| -# ax[i + 1].scatter(Xt[nt_0:, 0], Xt[nt_0:, 1], |
154 |
| -# marker='o', |
155 |
| -# edgecolor='black', |
156 |
| -# color='red', |
157 |
| -# ) |
158 |
| -# ax[i + 1].set_title('Model: {}\nAcc on target data: {:.2f}'.format(label, score), |
159 |
| -# fontsize=11) |
160 |
| -# ax[i + 1].legend() |
161 |
| -# |
162 |
| -## fig.savefig('../images/ser_strut.png') |
163 |
| -#plt.show() |
164 |
| -# |
| 143 | +# Plot decision functions |
| 144 | + |
| 145 | +# Data on which to plot source |
| 146 | +x_min, x_max = Xs[:, 0].min() - 1, Xs[:, 0].max() + 1 |
| 147 | +y_min, y_max = Xs[:, 1].min() - 1, Xs[:, 1].max() + 1 |
| 148 | +xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), |
| 149 | + np.arange(y_min, y_max, plot_step)) |
| 150 | +# Plot source model |
| 151 | +Z = clf_source.predict(np.c_[xx.ravel(), yy.ravel()]) |
| 152 | +Z = Z.reshape(xx.shape) |
| 153 | +fig, ax = plt.subplots(nrows=1, ncols=len(methods) + 1, figsize=(30, 3)) |
| 154 | +ax[0].contourf(xx, yy, Z, cmap=plt.cm.coolwarm, alpha=0.8) |
| 155 | +ax[0].scatter(Xs[0, 0], Xs[0, 1], |
| 156 | + marker='o', |
| 157 | + edgecolor='black', |
| 158 | + color='white', |
| 159 | + label='source data', |
| 160 | + ) |
| 161 | +ax[0].scatter(Xs[:ns_perclass, 0], Xs[:ns_perclass, 1], |
| 162 | + marker='o', |
| 163 | + edgecolor='black', |
| 164 | + color='blue', |
| 165 | + ) |
| 166 | +ax[0].scatter(Xs[ns_perclass:, 0], Xs[ns_perclass:, 1], |
| 167 | + marker='o', |
| 168 | + edgecolor='black', |
| 169 | + color='red', |
| 170 | + ) |
| 171 | +ax[0].set_title('Model: Source\nAcc on source data: {:.2f}\nAcc on target data: {:.2f}'.format(score_src_src, score_src_trgt), |
| 172 | + fontsize=11) |
| 173 | +ax[0].legend() |
| 174 | + |
| 175 | +# Data on which to plot target |
| 176 | +x_min, x_max = Xt[:, 0].min() - 1, Xt[:, 0].max() + 1 |
| 177 | +y_min, y_max = Xt[:, 1].min() - 1, Xt[:, 1].max() + 1 |
| 178 | +xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), |
| 179 | + np.arange(y_min, y_max, plot_step)) |
| 180 | +# Plot transfer models |
| 181 | +for i, (method, label, score) in enumerate(zip(methods, labels, scores)): |
| 182 | + clf_transfer = clfs[i] |
| 183 | + Z_transfer = clf_transfer.predict(np.c_[xx.ravel(), yy.ravel()]) |
| 184 | + Z_transfer = Z_transfer.reshape(xx.shape) |
| 185 | + ax[i + 1].contourf(xx, yy, Z_transfer, cmap=plt.cm.coolwarm, alpha=0.8) |
| 186 | + ax[i + 1].scatter(Xt[0, 0], Xt[0, 1], |
| 187 | + marker='o', |
| 188 | + edgecolor='black', |
| 189 | + color='white', |
| 190 | + label='target data', |
| 191 | + ) |
| 192 | + ax[i + 1].scatter(Xt[:nt_0, 0], Xt[:nt_0, 1], |
| 193 | + marker='o', |
| 194 | + edgecolor='black', |
| 195 | + color='blue', |
| 196 | + ) |
| 197 | + ax[i + 1].scatter(Xt[nt_0:, 0], Xt[nt_0:, 1], |
| 198 | + marker='o', |
| 199 | + edgecolor='black', |
| 200 | + color='red', |
| 201 | + ) |
| 202 | + ax[i + 1].set_title('Model: {}\nAcc on target data: {:.2f}'.format(label, score), |
| 203 | + fontsize=11) |
| 204 | + ax[i + 1].legend() |
| 205 | + |
| 206 | +# fig.savefig('../images/ser_strut.png') |
| 207 | +plt.show() |
| 208 | + |
0 commit comments