83
83
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.RegularTransferLC.html "> RegularTransferLC</ a > </ li >
84
84
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.RegularTransferNN.html "> RegularTransferNN</ a > </ li >
85
85
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.FineTuning.html "> FineTuning</ a > </ li >
86
+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.parameter_based.TransferTreeClassifier.html "> TransferTreeClassifier</ a > </ li >
86
87
</ ul >
87
88
</ li >
88
89
< li class ="toctree-l1 "> < a class ="reference internal " href ="#adapt-metrics "> Metrics</ a > < ul >
89
90
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.make_uda_scorer.html "> make_uda_scorer</ a > </ li >
90
91
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.cov_distance.html "> cov_distance</ a > </ li >
91
- < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.j_score .html "> j_score </ a > </ li >
92
+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.neg_j_score .html "> neg_j_score </ a > </ li >
92
93
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.linear_discrepancy.html "> linear_discrepancy</ a > </ li >
93
94
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.normalized_linear_discrepancy.html "> normalized_linear_discrepancy</ a > </ li >
94
95
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.metrics.frechet_distance.html "> frechet_distance</ a > </ li >
98
99
</ ul >
99
100
</ li >
100
101
< li class ="toctree-l1 "> < a class ="reference internal " href ="#adapt-utils "> Utility Functions</ a > < ul >
102
+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.UpdateLambda.html "> UpdateLambda</ a > </ li >
101
103
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.accuracy.html "> accuracy</ a > </ li >
102
104
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_arrays.html "> check_arrays</ a > </ li >
103
105
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_estimator.html "> check_estimator</ a > </ li >
110
112
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.make_regression_da.html "> make_regression_da</ a > </ li >
111
113
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_sample_weight.html "> check_sample_weight</ a > </ li >
112
114
< li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.set_random_seed.html "> set_random_seed</ a > </ li >
115
+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_fitted_estimator.html "> check_fitted_estimator</ a > </ li >
116
+ < li class ="toctree-l2 "> < a class ="reference internal " href ="generated/adapt.utils.check_fitted_network.html "> check_fitted_network</ a > </ li >
113
117
</ ul >
114
118
</ li >
115
119
</ ul >
@@ -372,6 +376,9 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
372
376
< tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.parameter_based.FineTuning.html#adapt.parameter_based.FineTuning " title ="adapt.parameter_based.FineTuning "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> parameter_based.FineTuning</ span > </ code > </ a > ([encoder, task, ...])</ p > </ td >
373
377
< td > < p > FineTuning : finetunes pretrained networks on target data.</ p > </ td >
374
378
</ tr >
379
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.parameter_based.TransferTreeClassifier.html#adapt.parameter_based.TransferTreeClassifier " title ="adapt.parameter_based.TransferTreeClassifier "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> parameter_based.TransferTreeClassifier</ span > </ code > </ a > ([...])</ p > </ td >
380
+ < td > < p > TBA</ p > </ td >
381
+ </ tr >
375
382
</ tbody >
376
383
</ table >
377
384
</ section >
@@ -390,7 +397,7 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
390
397
< tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.cov_distance.html#adapt.metrics.cov_distance " title ="adapt.metrics.cov_distance "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.cov_distance</ span > </ code > </ a > (Xs, Xt)</ p > </ td >
391
398
< td > < p > Compute the mean absolute difference between the covariance matrixes of Xs and Xt</ p > </ td >
392
399
</ tr >
393
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.j_score .html#adapt.metrics.j_score " title ="adapt.metrics.j_score "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.j_score </ span > </ code > </ a > (Xs, Xt[, max_centers, sigma])</ p > </ td >
400
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.neg_j_score .html#adapt.metrics.neg_j_score " title ="adapt.metrics.neg_j_score "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.neg_j_score </ span > </ code > </ a > (Xs, Xt[, max_centers, sigma])</ p > </ td >
394
401
< td > < p > Compute the negative J-score between Xs and Xt.</ p > </ td >
395
402
</ tr >
396
403
< tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.metrics.linear_discrepancy.html#adapt.metrics.linear_discrepancy " title ="adapt.metrics.linear_discrepancy "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> metrics.linear_discrepancy</ span > </ code > </ a > (Xs, Xt[, ...])</ p > </ td >
@@ -423,42 +430,51 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
423
430
< col style ="width: 90% " />
424
431
</ colgroup >
425
432
< tbody >
426
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.accuracy.html#adapt.utils.accuracy " title ="adapt.utils.accuracy "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.accuracy</ span > </ code > </ a > (y_true, y_pred)</ p > </ td >
433
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.UpdateLambda.html#adapt.utils.UpdateLambda " title ="adapt.utils.UpdateLambda "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.UpdateLambda</ span > </ code > </ a > ([lambda_init, ...])</ p > </ td >
434
+ < td > < p > Update Lambda trade-off</ p > </ td >
435
+ </ tr >
436
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.accuracy.html#adapt.utils.accuracy " title ="adapt.utils.accuracy "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.accuracy</ span > </ code > </ a > (y_true, y_pred)</ p > </ td >
427
437
< td > < p > Custom accuracy function which can handle probas vector in both binary and multi classification</ p > </ td >
428
438
</ tr >
429
- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_arrays.html#adapt.utils.check_arrays " title ="adapt.utils.check_arrays "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_arrays</ span > </ code > </ a > (X, y)</ p > </ td >
439
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_arrays.html#adapt.utils.check_arrays " title ="adapt.utils.check_arrays "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_arrays</ span > </ code > </ a > (X, y)</ p > </ td >
430
440
< td > < p > Check arrays and reshape 1D array in 2D array of shape (-1, 1).</ p > </ td >
431
441
</ tr >
432
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_estimator.html#adapt.utils.check_estimator " title ="adapt.utils.check_estimator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_estimator</ span > </ code > </ a > ([estimator, copy, ...])</ p > </ td >
442
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_estimator.html#adapt.utils.check_estimator " title ="adapt.utils.check_estimator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_estimator</ span > </ code > </ a > ([estimator, copy, ...])</ p > </ td >
433
443
< td > < p > Check estimator.</ p > </ td >
434
444
</ tr >
435
- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_network.html#adapt.utils.check_network " title ="adapt.utils.check_network "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_network</ span > </ code > </ a > (network[, copy, name, ...])</ p > </ td >
445
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_network.html#adapt.utils.check_network " title ="adapt.utils.check_network "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_network</ span > </ code > </ a > (network[, copy, name, ...])</ p > </ td >
436
446
< td > < p > Check if the given network is a tensorflow Model.</ p > </ td >
437
447
</ tr >
438
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_encoder.html#adapt.utils.get_default_encoder " title ="adapt.utils.get_default_encoder "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_encoder</ span > </ code > </ a > ([name])</ p > </ td >
448
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_encoder.html#adapt.utils.get_default_encoder " title ="adapt.utils.get_default_encoder "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_encoder</ span > </ code > </ a > ([name])</ p > </ td >
439
449
< td > < p > Return a tensorflow Model of one layer with 10 neurons and a relu activation.</ p > </ td >
440
450
</ tr >
441
- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_task.html#adapt.utils.get_default_task " title ="adapt.utils.get_default_task "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_task</ span > </ code > </ a > ([activation, name])</ p > </ td >
451
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_task.html#adapt.utils.get_default_task " title ="adapt.utils.get_default_task "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_task</ span > </ code > </ a > ([activation, name])</ p > </ td >
442
452
< td > < p > Return a tensorflow Model of two hidden layers with 10 neurons each and relu activations.</ p > </ td >
443
453
</ tr >
444
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_discriminator.html#adapt.utils.get_default_discriminator " title ="adapt.utils.get_default_discriminator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_discriminator</ span > </ code > </ a > ([name])</ p > </ td >
454
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.get_default_discriminator.html#adapt.utils.get_default_discriminator " title ="adapt.utils.get_default_discriminator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.get_default_discriminator</ span > </ code > </ a > ([name])</ p > </ td >
445
455
< td > < p > Return a tensorflow Model of two hidden layers with 10 neurons each and relu activations.</ p > </ td >
446
456
</ tr >
447
- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.GradientHandler.html#adapt.utils.GradientHandler " title ="adapt.utils.GradientHandler "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.GradientHandler</ span > </ code > </ a > (*args, **kwargs)</ p > </ td >
457
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.GradientHandler.html#adapt.utils.GradientHandler " title ="adapt.utils.GradientHandler "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.GradientHandler</ span > </ code > </ a > (*args, **kwargs)</ p > </ td >
448
458
< td > < p > Multiply gradients with a scalar during backpropagation.</ p > </ td >
449
459
</ tr >
450
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_classification_da.html#adapt.utils.make_classification_da " title ="adapt.utils.make_classification_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_classification_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
460
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_classification_da.html#adapt.utils.make_classification_da " title ="adapt.utils.make_classification_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_classification_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
451
461
< td > < p > Generate a classification dataset for DA.</ p > </ td >
452
462
</ tr >
453
- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_regression_da.html#adapt.utils.make_regression_da " title ="adapt.utils.make_regression_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_regression_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
463
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.make_regression_da.html#adapt.utils.make_regression_da " title ="adapt.utils.make_regression_da "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.make_regression_da</ span > </ code > </ a > ([n_samples, ...])</ p > </ td >
454
464
< td > < p > Generate a regression dataset for DA.</ p > </ td >
455
465
</ tr >
456
- < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_sample_weight.html#adapt.utils.check_sample_weight " title ="adapt.utils.check_sample_weight "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_sample_weight</ span > </ code > </ a > (sample_weight, X)</ p > </ td >
466
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_sample_weight.html#adapt.utils.check_sample_weight " title ="adapt.utils.check_sample_weight "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_sample_weight</ span > </ code > </ a > (sample_weight, X)</ p > </ td >
457
467
< td > < p > Check sample weights.</ p > </ td >
458
468
</ tr >
459
- < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.set_random_seed.html#adapt.utils.set_random_seed " title ="adapt.utils.set_random_seed "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.set_random_seed</ span > </ code > </ a > (random_state)</ p > </ td >
469
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.set_random_seed.html#adapt.utils.set_random_seed " title ="adapt.utils.set_random_seed "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.set_random_seed</ span > </ code > </ a > (random_state)</ p > </ td >
460
470
< td > < p > Set random seed for numpy and Tensorflow</ p > </ td >
461
471
</ tr >
472
+ < tr class ="row-even "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_fitted_estimator.html#adapt.utils.check_fitted_estimator " title ="adapt.utils.check_fitted_estimator "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_fitted_estimator</ span > </ code > </ a > (estimator)</ p > </ td >
473
+ < td > < p > Check Fitted Estimator</ p > </ td >
474
+ </ tr >
475
+ < tr class ="row-odd "> < td > < p > < a class ="reference internal " href ="generated/adapt.utils.check_fitted_network.html#adapt.utils.check_fitted_network " title ="adapt.utils.check_fitted_network "> < code class ="xref py py-obj docutils literal notranslate "> < span class ="pre "> utils.check_fitted_network</ span > </ code > </ a > (estimator)</ p > </ td >
476
+ < td > < p > Check Fitted Network</ p > </ td >
477
+ </ tr >
462
478
</ tbody >
463
479
</ table >
464
480
</ section >
0 commit comments