Skip to content

Commit 666aed6

Browse files
Update docs
1 parent 3b5aaa7 commit 666aed6

File tree

93 files changed

+2249
-130
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

93 files changed

+2249
-130
lines changed

docs/contents.html

Lines changed: 30 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -83,12 +83,13 @@
8383
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.parameter_based.RegularTransferLC.html">RegularTransferLC</a></li>
8484
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.parameter_based.RegularTransferNN.html">RegularTransferNN</a></li>
8585
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.parameter_based.FineTuning.html">FineTuning</a></li>
86+
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.parameter_based.TransferTreeClassifier.html">TransferTreeClassifier</a></li>
8687
</ul>
8788
</li>
8889
<li class="toctree-l1"><a class="reference internal" href="#adapt-metrics">Metrics</a><ul>
8990
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.make_uda_scorer.html">make_uda_scorer</a></li>
9091
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.cov_distance.html">cov_distance</a></li>
91-
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.j_score.html">j_score</a></li>
92+
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.neg_j_score.html">neg_j_score</a></li>
9293
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.linear_discrepancy.html">linear_discrepancy</a></li>
9394
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.normalized_linear_discrepancy.html">normalized_linear_discrepancy</a></li>
9495
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.metrics.frechet_distance.html">frechet_distance</a></li>
@@ -98,6 +99,7 @@
9899
</ul>
99100
</li>
100101
<li class="toctree-l1"><a class="reference internal" href="#adapt-utils">Utility Functions</a><ul>
102+
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.UpdateLambda.html">UpdateLambda</a></li>
101103
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.accuracy.html">accuracy</a></li>
102104
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.check_arrays.html">check_arrays</a></li>
103105
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.check_estimator.html">check_estimator</a></li>
@@ -110,6 +112,8 @@
110112
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.make_regression_da.html">make_regression_da</a></li>
111113
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.check_sample_weight.html">check_sample_weight</a></li>
112114
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.set_random_seed.html">set_random_seed</a></li>
115+
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.check_fitted_estimator.html">check_fitted_estimator</a></li>
116+
<li class="toctree-l2"><a class="reference internal" href="generated/adapt.utils.check_fitted_network.html">check_fitted_network</a></li>
113117
</ul>
114118
</li>
115119
</ul>
@@ -372,6 +376,9 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
372376
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.parameter_based.FineTuning.html#adapt.parameter_based.FineTuning" title="adapt.parameter_based.FineTuning"><code class="xref py py-obj docutils literal notranslate"><span class="pre">parameter_based.FineTuning</span></code></a>([encoder, task, ...])</p></td>
373377
<td><p>FineTuning : finetunes pretrained networks on target data.</p></td>
374378
</tr>
379+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.parameter_based.TransferTreeClassifier.html#adapt.parameter_based.TransferTreeClassifier" title="adapt.parameter_based.TransferTreeClassifier"><code class="xref py py-obj docutils literal notranslate"><span class="pre">parameter_based.TransferTreeClassifier</span></code></a>([...])</p></td>
380+
<td><p>TBA</p></td>
381+
</tr>
375382
</tbody>
376383
</table>
377384
</section>
@@ -390,7 +397,7 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
390397
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.metrics.cov_distance.html#adapt.metrics.cov_distance" title="adapt.metrics.cov_distance"><code class="xref py py-obj docutils literal notranslate"><span class="pre">metrics.cov_distance</span></code></a>(Xs, Xt)</p></td>
391398
<td><p>Compute the mean absolute difference between the covariance matrixes of Xs and Xt</p></td>
392399
</tr>
393-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.metrics.j_score.html#adapt.metrics.j_score" title="adapt.metrics.j_score"><code class="xref py py-obj docutils literal notranslate"><span class="pre">metrics.j_score</span></code></a>(Xs, Xt[, max_centers, sigma])</p></td>
400+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.metrics.neg_j_score.html#adapt.metrics.neg_j_score" title="adapt.metrics.neg_j_score"><code class="xref py py-obj docutils literal notranslate"><span class="pre">metrics.neg_j_score</span></code></a>(Xs, Xt[, max_centers, sigma])</p></td>
394401
<td><p>Compute the negative J-score between Xs and Xt.</p></td>
395402
</tr>
396403
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.metrics.linear_discrepancy.html#adapt.metrics.linear_discrepancy" title="adapt.metrics.linear_discrepancy"><code class="xref py py-obj docutils literal notranslate"><span class="pre">metrics.linear_discrepancy</span></code></a>(Xs, Xt[, ...])</p></td>
@@ -423,42 +430,51 @@ <h1>ADAPT<a class="headerlink" href="#adapt" title="Permalink to this headline">
423430
<col style="width: 90%" />
424431
</colgroup>
425432
<tbody>
426-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.accuracy.html#adapt.utils.accuracy" title="adapt.utils.accuracy"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.accuracy</span></code></a>(y_true, y_pred)</p></td>
433+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.UpdateLambda.html#adapt.utils.UpdateLambda" title="adapt.utils.UpdateLambda"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.UpdateLambda</span></code></a>([lambda_init, ...])</p></td>
434+
<td><p>Update Lambda trade-off</p></td>
435+
</tr>
436+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.accuracy.html#adapt.utils.accuracy" title="adapt.utils.accuracy"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.accuracy</span></code></a>(y_true, y_pred)</p></td>
427437
<td><p>Custom accuracy function which can handle probas vector in both binary and multi classification</p></td>
428438
</tr>
429-
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.check_arrays.html#adapt.utils.check_arrays" title="adapt.utils.check_arrays"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_arrays</span></code></a>(X, y)</p></td>
439+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.check_arrays.html#adapt.utils.check_arrays" title="adapt.utils.check_arrays"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_arrays</span></code></a>(X, y)</p></td>
430440
<td><p>Check arrays and reshape 1D array in 2D array of shape (-1, 1).</p></td>
431441
</tr>
432-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.check_estimator.html#adapt.utils.check_estimator" title="adapt.utils.check_estimator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_estimator</span></code></a>([estimator, copy, ...])</p></td>
442+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.check_estimator.html#adapt.utils.check_estimator" title="adapt.utils.check_estimator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_estimator</span></code></a>([estimator, copy, ...])</p></td>
433443
<td><p>Check estimator.</p></td>
434444
</tr>
435-
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.check_network.html#adapt.utils.check_network" title="adapt.utils.check_network"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_network</span></code></a>(network[, copy, name, ...])</p></td>
445+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.check_network.html#adapt.utils.check_network" title="adapt.utils.check_network"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_network</span></code></a>(network[, copy, name, ...])</p></td>
436446
<td><p>Check if the given network is a tensorflow Model.</p></td>
437447
</tr>
438-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.get_default_encoder.html#adapt.utils.get_default_encoder" title="adapt.utils.get_default_encoder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.get_default_encoder</span></code></a>([name])</p></td>
448+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.get_default_encoder.html#adapt.utils.get_default_encoder" title="adapt.utils.get_default_encoder"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.get_default_encoder</span></code></a>([name])</p></td>
439449
<td><p>Return a tensorflow Model of one layer with 10 neurons and a relu activation.</p></td>
440450
</tr>
441-
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.get_default_task.html#adapt.utils.get_default_task" title="adapt.utils.get_default_task"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.get_default_task</span></code></a>([activation, name])</p></td>
451+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.get_default_task.html#adapt.utils.get_default_task" title="adapt.utils.get_default_task"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.get_default_task</span></code></a>([activation, name])</p></td>
442452
<td><p>Return a tensorflow Model of two hidden layers with 10 neurons each and relu activations.</p></td>
443453
</tr>
444-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.get_default_discriminator.html#adapt.utils.get_default_discriminator" title="adapt.utils.get_default_discriminator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.get_default_discriminator</span></code></a>([name])</p></td>
454+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.get_default_discriminator.html#adapt.utils.get_default_discriminator" title="adapt.utils.get_default_discriminator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.get_default_discriminator</span></code></a>([name])</p></td>
445455
<td><p>Return a tensorflow Model of two hidden layers with 10 neurons each and relu activations.</p></td>
446456
</tr>
447-
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.GradientHandler.html#adapt.utils.GradientHandler" title="adapt.utils.GradientHandler"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.GradientHandler</span></code></a>(*args, **kwargs)</p></td>
457+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.GradientHandler.html#adapt.utils.GradientHandler" title="adapt.utils.GradientHandler"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.GradientHandler</span></code></a>(*args, **kwargs)</p></td>
448458
<td><p>Multiply gradients with a scalar during backpropagation.</p></td>
449459
</tr>
450-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.make_classification_da.html#adapt.utils.make_classification_da" title="adapt.utils.make_classification_da"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.make_classification_da</span></code></a>([n_samples, ...])</p></td>
460+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.make_classification_da.html#adapt.utils.make_classification_da" title="adapt.utils.make_classification_da"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.make_classification_da</span></code></a>([n_samples, ...])</p></td>
451461
<td><p>Generate a classification dataset for DA.</p></td>
452462
</tr>
453-
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.make_regression_da.html#adapt.utils.make_regression_da" title="adapt.utils.make_regression_da"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.make_regression_da</span></code></a>([n_samples, ...])</p></td>
463+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.make_regression_da.html#adapt.utils.make_regression_da" title="adapt.utils.make_regression_da"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.make_regression_da</span></code></a>([n_samples, ...])</p></td>
454464
<td><p>Generate a regression dataset for DA.</p></td>
455465
</tr>
456-
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.check_sample_weight.html#adapt.utils.check_sample_weight" title="adapt.utils.check_sample_weight"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_sample_weight</span></code></a>(sample_weight, X)</p></td>
466+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.check_sample_weight.html#adapt.utils.check_sample_weight" title="adapt.utils.check_sample_weight"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_sample_weight</span></code></a>(sample_weight, X)</p></td>
457467
<td><p>Check sample weights.</p></td>
458468
</tr>
459-
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.set_random_seed.html#adapt.utils.set_random_seed" title="adapt.utils.set_random_seed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.set_random_seed</span></code></a>(random_state)</p></td>
469+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.set_random_seed.html#adapt.utils.set_random_seed" title="adapt.utils.set_random_seed"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.set_random_seed</span></code></a>(random_state)</p></td>
460470
<td><p>Set random seed for numpy and Tensorflow</p></td>
461471
</tr>
472+
<tr class="row-even"><td><p><a class="reference internal" href="generated/adapt.utils.check_fitted_estimator.html#adapt.utils.check_fitted_estimator" title="adapt.utils.check_fitted_estimator"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_fitted_estimator</span></code></a>(estimator)</p></td>
473+
<td><p>Check Fitted Estimator</p></td>
474+
</tr>
475+
<tr class="row-odd"><td><p><a class="reference internal" href="generated/adapt.utils.check_fitted_network.html#adapt.utils.check_fitted_network" title="adapt.utils.check_fitted_network"><code class="xref py py-obj docutils literal notranslate"><span class="pre">utils.check_fitted_network</span></code></a>(estimator)</p></td>
476+
<td><p>Check Fitted Network</p></td>
477+
</tr>
462478
</tbody>
463479
</table>
464480
</section>

docs/examples/Classification.html

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -83,12 +83,13 @@
8383
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.parameter_based.RegularTransferLC.html">RegularTransferLC</a></li>
8484
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.parameter_based.RegularTransferNN.html">RegularTransferNN</a></li>
8585
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.parameter_based.FineTuning.html">FineTuning</a></li>
86+
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.parameter_based.TransferTreeClassifier.html">TransferTreeClassifier</a></li>
8687
</ul>
8788
</li>
8889
<li class="toctree-l1"><a class="reference internal" href="../contents.html#adapt-metrics">Metrics</a><ul>
8990
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.make_uda_scorer.html">make_uda_scorer</a></li>
9091
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.cov_distance.html">cov_distance</a></li>
91-
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.j_score.html">j_score</a></li>
92+
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.neg_j_score.html">neg_j_score</a></li>
9293
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.linear_discrepancy.html">linear_discrepancy</a></li>
9394
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.normalized_linear_discrepancy.html">normalized_linear_discrepancy</a></li>
9495
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.metrics.frechet_distance.html">frechet_distance</a></li>
@@ -98,6 +99,7 @@
9899
</ul>
99100
</li>
100101
<li class="toctree-l1"><a class="reference internal" href="../contents.html#adapt-utils">Utility Functions</a><ul>
102+
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.UpdateLambda.html">UpdateLambda</a></li>
101103
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.accuracy.html">accuracy</a></li>
102104
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.check_arrays.html">check_arrays</a></li>
103105
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.check_estimator.html">check_estimator</a></li>
@@ -110,6 +112,8 @@
110112
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.make_regression_da.html">make_regression_da</a></li>
111113
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.check_sample_weight.html">check_sample_weight</a></li>
112114
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.set_random_seed.html">set_random_seed</a></li>
115+
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.check_fitted_estimator.html">check_fitted_estimator</a></li>
116+
<li class="toctree-l2"><a class="reference internal" href="../generated/adapt.utils.check_fitted_network.html">check_fitted_network</a></li>
113117
</ul>
114118
</li>
115119
</ul>
@@ -473,8 +477,8 @@
473477
</style>
474478
<section id="Classification">
475479
<h1>Classification<a class="headerlink" href="#Classification" title="Permalink to this headline"></a></h1>
476-
<div class="btn btn-notebook" role="button"><p><img alt="f6e3e691151b483e929e61b99dbcee1c" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
477-
</div><div class="btn btn-notebook" role="button"><p><img alt="812bc9d98efe46aeb33893afab590964" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
480+
<div class="btn btn-notebook" role="button"><p><img alt="a966f76b77f24009aa977763ca649bb9" src="../_images/colab_logo_32px.png" /> <a class="reference external" href="https://colab.research.google.com/drive/1ANQUix9Y6V4RXu-vAaCFGmU979d5m4bO?usp=sharing">Run in Google Colab</a></p>
481+
</div><div class="btn btn-notebook" role="button"><p><img alt="4335e175433742a2ad920bb842514876" src="../_images/github_logo_32px.png" /> <a class="reference external" href="https://github.com/adapt-python/notebooks/blob/d0364973c642ea4880756cef4e9f2ee8bb5e8495/Classification.ipynb">View on GitHub</a></p>
478482
</div><p>You will find here the application of DA methods from the ADAPT package on a simple two dimensional DA classification problem.</p>
479483
<p>First we import packages needed in the following. We will use <code class="docutils literal notranslate"><span class="pre">matplotlib</span> <span class="pre">Animation</span></code> tools in order to get a visual understanding of the mselected methods:</p>
480484
<div class="nbinput nblast docutils container">

0 commit comments

Comments
 (0)