Skip to content

Commit 6178a76

Browse files
authored
update comments
1 parent 5ddd4c9 commit 6178a76

File tree

1 file changed

+4
-59
lines changed

1 file changed

+4
-59
lines changed

adapt/parameter_based/_transfer_tree.py

Lines changed: 4 additions & 59 deletions
Original file line numberDiff line numberDiff line change
@@ -19,29 +19,17 @@ class TransferTreeClassifier(BaseAdaptEstimator):
1919
----------
2020
estimator : sklearn DecsionTreeClassifier (default=None)
2121
Source decision tree classifier.
22-
23-
Xt : numpy array (default=None)
24-
Target input data.
25-
26-
yt : numpy array (default=None)
27-
Target output data.
28-
22+
2923
algo : str or callable (default="")
3024
Leaves relabeling if "" or "relab".
3125
"ser" and "strut" for SER and STRUT algorithms
32-
33-
(pas la peine de commenter Xt, yt, copy, verbose et random_state)
26+
3427
3528
Attributes
3629
----------
37-
estimator_ : Same class as estimator
38-
Fitted Estimator.
39-
estimator : sklearn DecsionTreeClassifier
30+
estimator_ : sklearn DecsionTreeClassifier
4031
Transferred decision tree classifier using target data.
4132
42-
source_model:
43-
Source decision tree classifier.
44-
4533
parents : numpy array of int.
4634
4735
bool_parents_lr : numpy array of {-1,0,1} values.
@@ -108,39 +96,16 @@ def __init__(self,
10896
copy=self.copy,
10997
force_copy=True)
11098

111-
112-
# if not hasattr(estimator, "tree_"):
113-
# raise NotFittedError("`estimator` argument has no ``tree_`` attribute, "
114-
# "please call `fit` on `estimator` or use "
115-
# "another estimator.")
99+
116100

117101
self.parents = np.zeros(estimator.tree_.node_count,dtype=int)
118102
self.bool_parents_lr = np.zeros(estimator.tree_.node_count,dtype=int)
119103
self.rules = np.zeros(estimator.tree_.node_count,dtype=object)
120104
self.paths = np.zeros(estimator.tree_.node_count,dtype=object)
121105
self.depths = np.zeros(estimator.tree_.node_count,dtype=int)
122-
123-
self.estimator = estimator
124-
self.source_model = copy.deepcopy(self.estimator)
125-
126-
self.Xt = Xt
127-
self.yt = yt
128-
self.algo = algo
129-
self.copy = copy
130-
self.verbose = verbose
131-
self.random_state = random_state
132-
self.params = params
133106

134107
#Init. meta params
135108
self._compute_params()
136-
137-
#Target model
138-
if Xt is not None and yt is not None:
139-
self._relab(Xt,yt)
140-
self.target_model = self.estimator
141-
self.estimator = copy.deepcopy(self.source_model)
142-
else:
143-
self.target_model = None
144109

145110
def fit(self, Xt=None, yt=None, **fit_params):
146111
"""
@@ -164,26 +129,6 @@ def fit(self, Xt=None, yt=None, **fit_params):
164129
Xt, yt = self._get_target_data(Xt, yt)
165130
Xt, yt = check_arrays(Xt, yt)
166131
set_random_seed(self.random_state)
167-
168-
#if self.estimator is None:
169-
#Pas d'arbre source
170-
171-
#if self.estimator.node_count == 0:
172-
#Arbre vide
173-
174-
#set_random_seed(self.random_state)
175-
#Xt, yt = check_arrays(Xt, yt)
176-
177-
#self.estimator_ = check_estimator(self.estimator,copy=self.copy,force_copy=True)
178-
179-
#Tree_ = self.estimator.tree_
180-
181-
#Target model :
182-
if self.target_model is None :
183-
if Xt is not None and yt is not None:
184-
self._relab(Xt,yt)
185-
self.target_model = self.estimator
186-
self.estimator = copy.deepcopy(self.source_model)
187132

188133
self._modify_tree(self.estimator, Xt, yt)
189134

0 commit comments

Comments
 (0)