-
Notifications
You must be signed in to change notification settings - Fork 260
Open
Description
When not setting physo.physym.reward.USE_PARALLEL_OPTI_CONST = False
in the program, it is starting 10 additional processes:
(PhySO) joel@My-MacBook-Pro Flimitless % python physo_test.py
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
SR task started...
Traceback (most recent call last):
File "<string>", line 1, in <module>
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/spawn.py", line 125, in _main
prepare(preparation_data)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/spawn.py", line 236, in prepare
_fixup_main_from_path(data['init_main_from_path'])
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/spawn.py", line 287, in _fixup_main_from_path
main_content = runpy.run_path(main_path,
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/runpy.py", line 265, in run_path
return _run_module_code(code, init_globals, run_name,
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/runpy.py", line 97, in _run_module_code
_run_code(code, mod_globals, init_globals,
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/runpy.py", line 87, in _run_code
exec(code, run_globals)
File "/Users/joel/src/Flimitless/physo_test.py", line 21, in <module>
expression, logs = physo.SR(X, y,
File "/Users/joel/src/PhySO/physo/task/sr.py", line 279, in SR
rewards, candidates = fit (X, y, run_config,
File "/Users/joel/src/PhySO/physo/task/fit.py", line 74, in fit
hall_of_fame_R, hall_of_fame = learn.learner (
File "/Users/joel/src/PhySO/physo/learn/learn.py", line 165, in learner
R = batch.get_rewards()
File "/Users/joel/src/PhySO/physo/physym/batch.py", line 428, in get_rewards
rewards = self.rewards_computer(programs = self.programs,
File "/Users/joel/src/PhySO/physo/physym/reward.py", line 234, in rewards_computer
R = RewardsComputer(programs = programs,
File "/Users/joel/src/PhySO/physo/physym/reward.py", line 153, in RewardsComputer
programs.batch_optimize_constants(X = X,
File "/Users/joel/src/PhySO/physo/physym/program.py", line 2266, in batch_optimize_constants
Exec.BatchFreeConstOpti(progs = self,
File "/Users/joel/src/PhySO/physo/physym/execute.py", line 532, in BatchFreeConstOpti
pool = mp.Pool(processes=n_cpus)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/context.py", line 119, in Pool
return Pool(processes, initializer, initargs, maxtasksperchild,
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/pool.py", line 212, in __init__
self._repopulate_pool()
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/pool.py", line 303, in _repopulate_pool
return self._repopulate_pool_static(self._ctx, self.Process,
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/pool.py", line 326, in _repopulate_pool_static
w.start()
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/process.py", line 121, in start
self._popen = self._Popen(self)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/context.py", line 284, in _Popen
return Popen(process_obj)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 32, in __init__
super().__init__(process_obj)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/popen_fork.py", line 19, in __init__
self._launch(process_obj)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/popen_spawn_posix.py", line 42, in _launch
prep_data = spawn.get_preparation_data(process_obj._name)
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/spawn.py", line 154, in get_preparation_data
_check_not_importing_main()
File "/Users/joel/miniconda3/envs/PhySO/lib/python3.8/multiprocessing/spawn.py", line 134, in _check_not_importing_main
raise RuntimeError('''
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
Here is my program:
import numpy as np
import physo
#physo.physym.reward.USE_PARALLEL_EXE = False
physo.physym.reward.USE_PARALLEL_OPTI_CONST = False
# Constants
g = 9.80665 # Acceleration due to gravity in m/s^2
# Generating data
L = np.random.uniform(0.1, 100, 100)
T = 2 * np.pi * np.sqrt(L / g) # Calculating periods
# Preparing data for PhySO
X = np.stack((L,), axis=0)
y = T
# Corrected run of symbolic regression with the right dimensions for g
expression, logs = physo.SR(X, y,
X_units=[ [1, 0, 0] ], # Length of the pendulum
y_units=[0, 1, 0], # Period of the pendulum
fixed_consts=[1.], # Dimensionless constant
fixed_consts_units=[[0, 0, 0]],
free_consts_units=[[1, -2, 0]], # Correct units for g
run_config=physo.config.config1.config1)
# Print the resulting expression
print("Derived Expression:")
print(expression.get_infix_pretty(do_simplify=True))
print("")
print("Free constants:")
print(expression.free_const_values.cpu().detach().numpy())
pareto_front_complexities, pareto_front_programs, pareto_front_r, pareto_front_rmse = logs.get_pareto_front()
for i, prog in enumerate(pareto_front_programs):
# Showing expression
print(prog.get_infix_pretty(do_simplify=True))
# Showing free constant
free_consts = prog.free_const_values.detach().cpu().numpy()
for j in range (len(free_consts)):
print("%s = %f"%(prog.library.free_const_names[j], free_consts[j]))
# Showing RMSE
print("RMSE = {:e}".format(pareto_front_rmse[i]))
print("-------------")
My hardware is a MacBook Pro M1 Max:
% uname -a
Darwin My-MacBook-Pro.local 22.6.0 Darwin Kernel Version 22.6.0: Thu Nov 2 07:43:57 PDT 2023; root:xnu-8796.141.3.701.17~6/RELEASE_ARM64_T6000 arm64
I've installed it using miniconda.
Metadata
Metadata
Assignees
Labels
No labels