Skip to content

Commit 95ae10c

Browse files
committed
some adjustments and first try to get the CI testing and doc deployment running
1 parent db11571 commit 95ae10c

File tree

5 files changed

+33
-25
lines changed

5 files changed

+33
-25
lines changed

README.md

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -3,15 +3,6 @@
33
This package implements the stochastic Galerkin finite element method for certain model problems,
44
including iterative solvers and a posteriori error control in two dimensions.
55

6-
## Installation
7-
8-
Instantiate this project after cloning or updating via
9-
```
10-
$ julia --project=.
11-
julia> using Pkg
12-
julia> Pkg.instantiate()
13-
```
14-
156
## Scripts/Examples
167

178
- `scripts/poisson.jl`: Adaptive stochastic Galerkin FEM for the Poisson problem with stochastic diffusion coefficient

docs/make.jl

Lines changed: 9 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,20 +1,14 @@
11
using Documenter
22
using ExtendableASGFEM
33

4-
push!(LOAD_PATH,"../src/")
5-
64
makedocs(
75
modules = [ExtendableASGFEM],
86
sitename = "ExtendableASGFEM.jl",
97
authors = "Christian Merdon, Martin Eigel",
10-
repo = "https://lab.wias-berlin.de/merdon/ASGFEMJulia",
11-
# repolink = "https://lab.wias-berlin.de/merdon/ASGFEMJulia",
12-
format = Documenter.HTML(; mathengine = MathJax3()),
13-
clean = false,
14-
source = "src",
15-
build = "build",
8+
format = Documenter.HTML(; repolink = "https://github.com/WIAS-PDELib/ExtendableASGFEM.jl", mathengine = MathJax3()),
9+
clean = false,
1610
checkdocs = :all,
17-
warnonly = true,
11+
warnonly = false,
1812
doctest = true,
1913
pages = [
2014
"Home" => "index.md"
@@ -37,4 +31,9 @@ makedocs(
3731
"plots.md"
3832
]
3933
],
40-
)
34+
)
35+
36+
37+
deploydocs(
38+
repo = "github.com/WIAS-PDELib/ExtendableASGFEM.jl",
39+
)

docs/src/estimators.md

Lines changed: 14 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ the subresiduals that are associated to each multi-index
1313

1414
```@autodocs
1515
Modules = [ExtendableASGFEM]
16-
Pages = ["estimators.jl"]
16+
Pages = ["estimate.jl"]
1717
Order = [:type, :function]
1818
```
1919

@@ -29,4 +29,17 @@ Here are some methods that help with enriching the set of multi-indices.
2929
Modules = [ExtendableASGFEM]
3030
Pages = ["mopcontrol.jl"]
3131
Order = [:type, :function]
32+
```
33+
34+
## Monte carlo sampling estimator
35+
36+
There is also a hierarchical Monte carlo error estimator available that
37+
compares the solution with a higher order discrete solution for sampled
38+
deterministic problems. This is merely intended as a way to compute the
39+
reference error to assess the efficiency of the residual-based error estimator.
40+
41+
```@autodocs
42+
Modules = [ExtendableASGFEM]
43+
Pages = ["sampling_error.jl"]
44+
Order = [:type, :function]
3245
```

docs/src/estimators.pdf

900 Bytes
Binary file not shown.

scripts/poisson.jl

Lines changed: 10 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,12 +2,17 @@
22
33
([source code](SOURCE_URL))
44
5-
# runs AFEM loop for stochastic Poisson problem and saves results to data folder
5+
runs AFEM loop for stochastic Poisson problem, save/load results to/from data folder, plot results
6+
7+
main usage:
8+
- run experiment: run(; problem = problem, kwargs...)
9+
- load results : show_results(; kwargs...)
10+
- produce plots : produce_plots(; kwargs...)
611
712
possible values for problem are
8-
PoissonProblemPrimal = Poisson problem with linear coefficient a
9-
LogTransformedPoissonProblemPrimal = log-transformed Poisson problem with exponential coefficient exp(a)
10-
LogTransformedPoissonProblemDual = dual formulation
13+
- PoissonProblemPrimal = Poisson problem with linear coefficient a
14+
- LogTransformedPoissonProblemPrimal = log-transformed Poisson problem with exponential coefficient exp(a)
15+
- LogTransformedPoissonProblemDual = dual formulation
1116
1217
=#
1318

@@ -64,7 +69,7 @@ default_args = Dict(
6469
"θ_spatial" => 0.5,
6570
"factor_tail" => 1,
6671
"tail_extension" => [10,2], # for [0] mode, and all others
67-
"maxdofs" => 1e5,
72+
"maxdofs" => 1e4,
6873
"initial_modes" => [[0]],
6974
"nsamples" => 150,
7075
"use_equilibration_estimator" => false,

0 commit comments

Comments
 (0)