Skip to content

Commit adec74c

Browse files
Add quantum neural network and scientific domains
1 parent 78e73c4 commit adec74c

File tree

8 files changed

+592
-0
lines changed

8 files changed

+592
-0
lines changed

src/NeuroFlex/quantum_nn_module.py

Lines changed: 177 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,177 @@
1+
import jax
2+
import jax.numpy as jnp
3+
from jax import tree_util
4+
import flax.linen as nn
5+
import pennylane as qml
6+
import logging
7+
from typing import Callable, List, Tuple, Optional, Any, Dict
8+
from functools import partial
9+
from flax import struct
10+
11+
class QuantumNeuralNetwork(nn.Module):
12+
"""
13+
A quantum neural network module that combines classical and quantum computations.
14+
15+
This class implements a variational quantum circuit that can be used as a layer
16+
in a hybrid quantum-classical neural network.
17+
18+
Attributes:
19+
num_qubits (int): The number of qubits in the quantum circuit.
20+
num_layers (int): The number of layers in the variational quantum circuit.
21+
input_shape (Tuple[int, ...]): The shape of the input tensor.
22+
output_shape (Tuple[int, ...]): The shape of the output tensor (excluding batch dimension).
23+
max_retries (int): The maximum number of retries for quantum circuit execution.
24+
"""
25+
26+
num_qubits: int
27+
num_layers: int
28+
input_shape: Tuple[int, ...]
29+
output_shape: Tuple[int, ...]
30+
max_retries: int = 3
31+
device: Optional[qml.Device] = None
32+
qlayer: Optional[Callable] = None
33+
vmap_qlayer: Optional[Callable] = None
34+
35+
def setup(self):
36+
logging.info(f"Setting up QuantumNeuralNetwork with {self.num_qubits} qubits, {self.num_layers} layers, input shape {self.input_shape}, and output shape {self.output_shape}")
37+
self._validate_init_params()
38+
39+
self.param('weights', nn.initializers.uniform(scale=0.1), (self.num_layers, self.num_qubits, 3))
40+
try:
41+
quantum_components = self._initialize_quantum_components()
42+
self.device = quantum_components['device']
43+
self.qlayer = quantum_components['qlayer']
44+
self.vmap_qlayer = quantum_components['vmap_qlayer']
45+
self.variable('quantum_components', 'components', lambda: quantum_components)
46+
except Exception as e:
47+
logging.error(f"Error initializing quantum components: {str(e)}")
48+
fallback_components = self._fallback_initialization()
49+
self.device = fallback_components['device']
50+
self.qlayer = fallback_components['qlayer']
51+
self.vmap_qlayer = fallback_components['vmap_qlayer']
52+
self.variable('quantum_components', 'components', lambda: fallback_components)
53+
54+
def _validate_init_params(self):
55+
if not isinstance(self.num_qubits, int) or self.num_qubits <= 0:
56+
raise ValueError(f"Number of qubits must be a positive integer, got {self.num_qubits}")
57+
if not isinstance(self.num_layers, int) or self.num_layers <= 0:
58+
raise ValueError(f"Number of layers must be a positive integer, got {self.num_layers}")
59+
if not isinstance(self.input_shape, tuple) or len(self.input_shape) != 2 or self.input_shape[1] != self.num_qubits:
60+
raise ValueError(f"Invalid input_shape: {self.input_shape}. Expected shape (batch_size, {self.num_qubits})")
61+
if not isinstance(self.output_shape, tuple) or len(self.output_shape) != 1 or self.output_shape[0] != self.num_qubits:
62+
raise ValueError(f"Invalid output_shape: {self.output_shape}. Expected shape ({self.num_qubits},)")
63+
64+
def _initialize_quantum_components(self):
65+
try:
66+
self.device = qml.device("default.qubit", wires=self.num_qubits)
67+
self.qlayer = qml.QNode(self.quantum_circuit, self.device, interface="jax")
68+
self.vmap_qlayer = jax.vmap(self.qlayer, in_axes=(0, None))
69+
logging.info("Quantum components created successfully")
70+
return {
71+
'device': self.device,
72+
'qlayer': self.qlayer,
73+
'vmap_qlayer': self.vmap_qlayer
74+
}
75+
except Exception as e:
76+
logging.error(f"Error creating quantum components: {str(e)}")
77+
return self._fallback_initialization()
78+
79+
def quantum_circuit(self, inputs: jnp.ndarray, weights: jnp.ndarray) -> List[qml.measurements.ExpectationMP]:
80+
qml.AngleEmbedding(inputs, wires=range(self.num_qubits))
81+
for l in range(self.num_layers):
82+
qml.StronglyEntanglingLayers(weights[l], wires=range(self.num_qubits))
83+
return [qml.expval(qml.PauliZ(i)) for i in range(self.num_qubits)]
84+
85+
def validate_input_shape(self, x: jnp.ndarray) -> None:
86+
if len(x.shape) != 2 or x.shape[1] != self.num_qubits:
87+
raise ValueError(f"Input shape {x.shape} does not match expected shape (batch_size, {self.num_qubits})")
88+
89+
def __call__(self, x: jnp.ndarray, deterministic: bool = False) -> jnp.ndarray:
90+
try:
91+
self.validate_input_shape(x)
92+
if jnp.any(jnp.isnan(x)) or jnp.any(jnp.isinf(x)):
93+
raise ValueError(f"Input contains NaN or Inf values: {x}")
94+
95+
logging.debug(f"Executing quantum circuit with input shape: {x.shape}")
96+
if self.vmap_qlayer is None:
97+
logging.warning("Quantum components not initialized. Attempting initialization.")
98+
self._initialize_quantum_components()
99+
if self.vmap_qlayer is None:
100+
logging.error("Quantum components initialization failed. Using fallback.")
101+
return self._fallback_output(x)
102+
103+
result_array = self._execute_quantum_circuit(x)
104+
105+
expected_shape = (x.shape[0],) + self.output_shape
106+
if result_array.shape != expected_shape:
107+
logging.warning(f"Output shape mismatch. Expected {expected_shape}, got {result_array.shape}. Reshaping.")
108+
result_array = jnp.reshape(result_array, expected_shape)
109+
110+
result_array = jnp.clip(result_array, -1, 1)
111+
logging.info(f"Quantum circuit executed successfully. Input shape: {x.shape}, Output shape: {result_array.shape}")
112+
return result_array
113+
except ValueError as ve:
114+
logging.error(f"ValueError during quantum circuit execution: {str(ve)}")
115+
return self._fallback_output(x)
116+
except Exception as e:
117+
logging.error(f"Unexpected error during quantum circuit execution: {str(e)}")
118+
return self._fallback_output(x)
119+
120+
def _execute_quantum_circuit(self, x: jnp.ndarray) -> jnp.ndarray:
121+
weights = self.variable('params', 'weights').value
122+
for attempt in range(self.max_retries):
123+
try:
124+
logging.debug(f"Attempt {attempt + 1}/{self.max_retries} to execute quantum circuit")
125+
if self.vmap_qlayer is None:
126+
raise ValueError("Quantum components not properly initialized")
127+
result = self.vmap_qlayer(x, weights)
128+
result_array = jnp.array(result)
129+
if jnp.all(jnp.isfinite(result_array)):
130+
logging.info(f"Quantum circuit execution successful on attempt {attempt + 1}")
131+
return result_array
132+
else:
133+
raise ValueError("Quantum circuit produced non-finite values")
134+
except Exception as e:
135+
logging.warning(f"Quantum circuit execution failed on attempt {attempt + 1}: {str(e)}")
136+
if attempt == self.max_retries - 1:
137+
logging.error("Max retries reached. Quantum circuit execution failed.")
138+
return self._fallback_output(x)
139+
return self._fallback_output(x) # Ensure a return value if loop completes
140+
141+
def _fallback_output(self, x: jnp.ndarray) -> jnp.ndarray:
142+
fallback = jnp.zeros((x.shape[0],) + self.output_shape)
143+
noise = jax.random.normal(jax.random.PRNGKey(0), fallback.shape) * 0.1
144+
return jnp.clip(fallback + noise, -1, 1)
145+
146+
def _fallback_initialization(self):
147+
logging.warning("Falling back to classical initialization")
148+
fallback_components = {
149+
'device': None,
150+
'qlayer': lambda x, w: jnp.zeros(self.output_shape),
151+
'vmap_qlayer': jax.vmap(lambda x, w: jnp.zeros(self.output_shape), in_axes=(0, None))
152+
}
153+
logging.info("Classical fallback initialization completed")
154+
self.sow('quantum_components', 'components', fallback_components)
155+
return fallback_components
156+
157+
def reinitialize_device(self):
158+
try:
159+
new_device = qml.device("default.qubit", wires=self.num_qubits)
160+
new_qlayer = qml.QNode(self.quantum_circuit, new_device, interface="jax")
161+
new_vmap_qlayer = jax.vmap(new_qlayer, in_axes=(0, None))
162+
new_components = {
163+
'device': new_device,
164+
'qlayer': new_qlayer,
165+
'vmap_qlayer': new_vmap_qlayer
166+
}
167+
self.variable('quantum_components', 'components', lambda: new_components)
168+
logging.info("Quantum device reinitialized successfully")
169+
except Exception as e:
170+
logging.error(f"Error reinitializing quantum device: {str(e)}")
171+
fallback_components = self._fallback_initialization()
172+
self.variable('quantum_components', 'components', lambda: fallback_components)
173+
return self.variable('quantum_components', 'components').value
174+
175+
@partial(jax.jit, static_argnums=(0, 1, 2, 3))
176+
def create_quantum_nn(num_qubits: int, num_layers: int, input_shape: Tuple[int, ...], output_shape: Tuple[int, ...]) -> QuantumNeuralNetwork:
177+
return QuantumNeuralNetwork(num_qubits=num_qubits, num_layers=num_layers, input_shape=input_shape, output_shape=output_shape)

src/NeuroFlex/scientific_domains/__init__.py

Whitespace-only changes.
Lines changed: 14 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,14 @@
1+
import jax.numpy as jnp
2+
3+
class QuantumDomains:
4+
def __init__(self):
5+
# Placeholder initialization
6+
pass
7+
8+
def simulate(self, state):
9+
# Placeholder quantum simulation
10+
return jnp.array(state)
11+
12+
def measure(self, state):
13+
# Placeholder measurement
14+
return jnp.abs(state)**2

src/NeuroFlex/tensorflow_module.py

Lines changed: 52 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,52 @@
1+
# TensorFlow specific implementations will go here
2+
3+
import tensorflow as tf
4+
import keras
5+
6+
# Example model using TensorFlow
7+
class TensorFlowModel(keras.Model):
8+
def __init__(self, features):
9+
super(TensorFlowModel, self).__init__()
10+
self.layers_ = keras.Sequential([
11+
keras.layers.Dense(100, activation='relu'),
12+
keras.layers.Dense(features),
13+
])
14+
15+
def call(self, inputs):
16+
return self.layers_(inputs)
17+
18+
# Training function
19+
@tf.function
20+
def train_tf_model(model, X, y, epochs=10, lr=0.001):
21+
optimizer = keras.optimizers.Adam(learning_rate=lr)
22+
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
23+
24+
@tf.function
25+
def train_step(x, y):
26+
with tf.GradientTape() as tape:
27+
logits = model(x, training=True)
28+
loss = loss_fn(y, logits)
29+
gradients = tape.gradient(loss, model.trainable_variables)
30+
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
31+
return loss
32+
33+
for epoch in range(epochs):
34+
loss = train_step(X, y)
35+
if epoch % 10 == 0:
36+
print(f"Epoch {epoch}, Loss: {loss.numpy()}")
37+
38+
return model
39+
40+
# Decorator for distributed training
41+
def distribute(strategy):
42+
def decorator(func):
43+
def wrapper(*args, **kwargs):
44+
return strategy.run(func, args=args, kwargs=kwargs)
45+
return wrapper
46+
return decorator
47+
48+
# Example usage of distribute decorator
49+
# @distribute(tf.distribute.MirroredStrategy())
50+
# def distributed_train_step(model, x, y):
51+
# # Your distributed training logic here
52+
# pass

0 commit comments

Comments
 (0)