Skip to content

Commit 4547007

Browse files
push
1 parent a1e3310 commit 4547007

File tree

1 file changed

+116
-0
lines changed

1 file changed

+116
-0
lines changed

quantum_protein_development.py

Lines changed: 116 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,116 @@
1+
import pennylane as qml
2+
import numpy as np
3+
4+
class QuantumProteinFolding:
5+
def __init__(self, num_qubits, num_layers):
6+
self.num_qubits = num_qubits
7+
self.num_layers = num_layers
8+
self.dev = qml.device("default.qubit", wires=num_qubits)
9+
self.params = np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 3))
10+
11+
@qml.qnode(device=qml.device("default.qubit", wires=1))
12+
def qubit_layer(params, input_val):
13+
qml.RX(input_val, wires=0)
14+
qml.RY(params[0], wires=0)
15+
qml.RZ(params[1], wires=0)
16+
return qml.expval(qml.PauliZ(0))
17+
18+
class QuantumProteinFolding:
19+
def __init__(self, num_qubits, num_layers):
20+
self.num_qubits = num_qubits
21+
self.num_layers = num_layers
22+
self.dev = qml.device("default.qubit", wires=num_qubits)
23+
self.params = qml.numpy.array(np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 2)), requires_grad=True)
24+
25+
def quantum_protein_layer(self, inputs, params):
26+
@qml.qnode(self.dev)
27+
def quantum_circuit(inputs, params):
28+
for i in range(len(inputs)):
29+
wire_i = i % self.num_qubits
30+
next_wire = (i + 1) % self.num_qubits
31+
# Dendrite processing
32+
qml.RX(inputs[i], wires=wire_i)
33+
qml.RY(params[wire_i, 0], wires=wire_i)
34+
35+
# Soma processing
36+
qml.RZ(params[wire_i, 1], wires=wire_i)
37+
qml.CNOT(wires=[wire_i, next_wire])
38+
39+
return [qml.expval(qml.PauliZ(i % self.num_qubits)) for i in range(len(inputs))]
40+
41+
return np.array(quantum_circuit(inputs, params))
42+
43+
def forward(self, amino_acid_sequence):
44+
x = np.array(amino_acid_sequence)
45+
for layer in range(self.num_layers):
46+
x = self.quantum_protein_layer(x, self.params[layer])
47+
return x
48+
49+
def protein_folding_simulation(self, amino_acid_sequence):
50+
"""
51+
Simulate protein folding using quantum circuits.
52+
53+
Args:
54+
amino_acid_sequence (list): A list of numbers representing amino acids.
55+
56+
Returns:
57+
np.array: Simulated protein structure.
58+
59+
Raises:
60+
ValueError: If the amino_acid_sequence is empty.
61+
"""
62+
if len(amino_acid_sequence) == 0:
63+
raise ValueError("The amino acid sequence cannot be empty.")
64+
return self.forward(amino_acid_sequence)
65+
66+
def optimize_folding(self, amino_acid_sequence, num_iterations=200):
67+
"""
68+
Optimize the protein folding simulation.
69+
70+
Args:
71+
amino_acid_sequence (list): A list of numbers representing amino acids.
72+
num_iterations (int): Number of optimization iterations.
73+
74+
Returns:
75+
np.array: Optimized protein structure.
76+
"""
77+
opt = qml.AdamOptimizer(stepsize=0.05)
78+
79+
def cost(params):
80+
self.params = params.reshape(self.num_layers, self.num_qubits, 2)
81+
folded_protein = self.protein_folding_simulation(amino_acid_sequence)
82+
# New cost function: minimize the sum of squares of the folded protein
83+
return qml.math.sum(folded_protein**2)
84+
85+
initial_params = self.params.copy()
86+
params = initial_params.flatten()
87+
88+
for i in range(num_iterations):
89+
params, cost_val = opt.step_and_cost(cost, params)
90+
91+
self.params = params.reshape(self.num_layers, self.num_qubits, 2)
92+
optimized_result = self.protein_folding_simulation(amino_acid_sequence)
93+
initial_result = self.forward(amino_acid_sequence)
94+
95+
if qml.math.sum(optimized_result**2) < qml.math.sum(initial_result**2):
96+
return optimized_result
97+
else:
98+
self.params = initial_params
99+
return initial_result
100+
101+
# Example usage
102+
if __name__ == "__main__":
103+
num_qubits = 4
104+
num_layers = 2
105+
qpf = QuantumProteinFolding(num_qubits, num_layers)
106+
107+
# Example amino acid sequence (simplified as numbers)
108+
amino_acid_sequence = [0.1, 0.2, 0.3, 0.4]
109+
110+
# Simulate protein folding
111+
folded_protein = qpf.protein_folding_simulation(amino_acid_sequence)
112+
print("Simulated folded protein structure:", folded_protein)
113+
114+
# Optimize folding
115+
optimized_protein = qpf.optimize_folding(amino_acid_sequence)
116+
print("Optimized folded protein structure:", optimized_protein)

0 commit comments

Comments
 (0)