|
| 1 | +import pennylane as qml |
| 2 | +import numpy as np |
| 3 | + |
| 4 | +class QuantumProteinFolding: |
| 5 | + def __init__(self, num_qubits, num_layers): |
| 6 | + self.num_qubits = num_qubits |
| 7 | + self.num_layers = num_layers |
| 8 | + self.dev = qml.device("default.qubit", wires=num_qubits) |
| 9 | + self.params = np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 3)) |
| 10 | + |
| 11 | +@qml.qnode(device=qml.device("default.qubit", wires=1)) |
| 12 | +def qubit_layer(params, input_val): |
| 13 | + qml.RX(input_val, wires=0) |
| 14 | + qml.RY(params[0], wires=0) |
| 15 | + qml.RZ(params[1], wires=0) |
| 16 | + return qml.expval(qml.PauliZ(0)) |
| 17 | + |
| 18 | +class QuantumProteinFolding: |
| 19 | + def __init__(self, num_qubits, num_layers): |
| 20 | + self.num_qubits = num_qubits |
| 21 | + self.num_layers = num_layers |
| 22 | + self.dev = qml.device("default.qubit", wires=num_qubits) |
| 23 | + self.params = qml.numpy.array(np.random.uniform(low=-np.pi, high=np.pi, size=(num_layers, num_qubits, 2)), requires_grad=True) |
| 24 | + |
| 25 | + def quantum_protein_layer(self, inputs, params): |
| 26 | + @qml.qnode(self.dev) |
| 27 | + def quantum_circuit(inputs, params): |
| 28 | + for i in range(len(inputs)): |
| 29 | + wire_i = i % self.num_qubits |
| 30 | + next_wire = (i + 1) % self.num_qubits |
| 31 | + # Dendrite processing |
| 32 | + qml.RX(inputs[i], wires=wire_i) |
| 33 | + qml.RY(params[wire_i, 0], wires=wire_i) |
| 34 | + |
| 35 | + # Soma processing |
| 36 | + qml.RZ(params[wire_i, 1], wires=wire_i) |
| 37 | + qml.CNOT(wires=[wire_i, next_wire]) |
| 38 | + |
| 39 | + return [qml.expval(qml.PauliZ(i % self.num_qubits)) for i in range(len(inputs))] |
| 40 | + |
| 41 | + return np.array(quantum_circuit(inputs, params)) |
| 42 | + |
| 43 | + def forward(self, amino_acid_sequence): |
| 44 | + x = np.array(amino_acid_sequence) |
| 45 | + for layer in range(self.num_layers): |
| 46 | + x = self.quantum_protein_layer(x, self.params[layer]) |
| 47 | + return x |
| 48 | + |
| 49 | + def protein_folding_simulation(self, amino_acid_sequence): |
| 50 | + """ |
| 51 | + Simulate protein folding using quantum circuits. |
| 52 | +
|
| 53 | + Args: |
| 54 | + amino_acid_sequence (list): A list of numbers representing amino acids. |
| 55 | +
|
| 56 | + Returns: |
| 57 | + np.array: Simulated protein structure. |
| 58 | +
|
| 59 | + Raises: |
| 60 | + ValueError: If the amino_acid_sequence is empty. |
| 61 | + """ |
| 62 | + if len(amino_acid_sequence) == 0: |
| 63 | + raise ValueError("The amino acid sequence cannot be empty.") |
| 64 | + return self.forward(amino_acid_sequence) |
| 65 | + |
| 66 | + def optimize_folding(self, amino_acid_sequence, num_iterations=200): |
| 67 | + """ |
| 68 | + Optimize the protein folding simulation. |
| 69 | +
|
| 70 | + Args: |
| 71 | + amino_acid_sequence (list): A list of numbers representing amino acids. |
| 72 | + num_iterations (int): Number of optimization iterations. |
| 73 | +
|
| 74 | + Returns: |
| 75 | + np.array: Optimized protein structure. |
| 76 | + """ |
| 77 | + opt = qml.AdamOptimizer(stepsize=0.05) |
| 78 | + |
| 79 | + def cost(params): |
| 80 | + self.params = params.reshape(self.num_layers, self.num_qubits, 2) |
| 81 | + folded_protein = self.protein_folding_simulation(amino_acid_sequence) |
| 82 | + # New cost function: minimize the sum of squares of the folded protein |
| 83 | + return qml.math.sum(folded_protein**2) |
| 84 | + |
| 85 | + initial_params = self.params.copy() |
| 86 | + params = initial_params.flatten() |
| 87 | + |
| 88 | + for i in range(num_iterations): |
| 89 | + params, cost_val = opt.step_and_cost(cost, params) |
| 90 | + |
| 91 | + self.params = params.reshape(self.num_layers, self.num_qubits, 2) |
| 92 | + optimized_result = self.protein_folding_simulation(amino_acid_sequence) |
| 93 | + initial_result = self.forward(amino_acid_sequence) |
| 94 | + |
| 95 | + if qml.math.sum(optimized_result**2) < qml.math.sum(initial_result**2): |
| 96 | + return optimized_result |
| 97 | + else: |
| 98 | + self.params = initial_params |
| 99 | + return initial_result |
| 100 | + |
| 101 | +# Example usage |
| 102 | +if __name__ == "__main__": |
| 103 | + num_qubits = 4 |
| 104 | + num_layers = 2 |
| 105 | + qpf = QuantumProteinFolding(num_qubits, num_layers) |
| 106 | + |
| 107 | + # Example amino acid sequence (simplified as numbers) |
| 108 | + amino_acid_sequence = [0.1, 0.2, 0.3, 0.4] |
| 109 | + |
| 110 | + # Simulate protein folding |
| 111 | + folded_protein = qpf.protein_folding_simulation(amino_acid_sequence) |
| 112 | + print("Simulated folded protein structure:", folded_protein) |
| 113 | + |
| 114 | + # Optimize folding |
| 115 | + optimized_protein = qpf.optimize_folding(amino_acid_sequence) |
| 116 | + print("Optimized folded protein structure:", optimized_protein) |
0 commit comments