|
| 1 | +Require Import init.imports. |
| 2 | +Require Import UniMath.Combinatorics.Lists. |
| 3 | + |
| 4 | +Section Definitions. |
| 5 | + |
| 6 | + Definition is_in {X : UU} (x : X) : (list X) → UU. |
| 7 | + Proof. |
| 8 | + use list_ind. |
| 9 | + - exact empty. |
| 10 | + - intros. |
| 11 | + exact (X0 ⨿ (x = x0)). |
| 12 | + Defined. |
| 13 | + |
| 14 | + Definition hin {X : UU} (x : X) : (list X) → hProp := (λ l : (list X), ∥is_in x l∥). |
| 15 | + |
| 16 | + Section Tests. |
| 17 | + |
| 18 | + Definition l : list nat := (cons 1 (cons 2 (cons 3 (nil)))). |
| 19 | + |
| 20 | + Lemma test1In : (is_in 1 l). |
| 21 | + Proof. |
| 22 | + right; apply idpath. |
| 23 | + Qed. |
| 24 | + |
| 25 | + Lemma negtest4In : ¬ (is_in 4 (cons 1 nil)). |
| 26 | + Proof. |
| 27 | + intros [a | b]. |
| 28 | + - exact a. |
| 29 | + - apply (negpathssx0 2). |
| 30 | + apply invmaponpathsS. |
| 31 | + exact b. |
| 32 | + Qed. |
| 33 | + End Tests. |
| 34 | + |
| 35 | +End Definitions. |
| 36 | + |
| 37 | +Section Length. |
| 38 | + (*Lemmas related to the length of the list*) |
| 39 | + |
| 40 | + Lemma length_zero_nil {X : UU} (l : list X) (eq : 0 = length l) : l = nil. |
| 41 | + Proof. |
| 42 | + revert l eq. |
| 43 | + use list_ind. |
| 44 | + - exact (λ x, (idpath nil)). |
| 45 | + - intros x xs Ih eq. |
| 46 | + apply fromempty. |
| 47 | + apply (negpaths0sx (length xs) eq). |
| 48 | + Qed. |
| 49 | + |
| 50 | + Lemma length_cons {X : UU} (l : list X) (inq : 0 < length l) : ∑ (x0 : X) (l2 : list X), l = (cons x0 l2). |
| 51 | + revert l inq. |
| 52 | + use list_ind. |
| 53 | + - intros inq. |
| 54 | + exact (fromempty (isirreflnatlth 0 inq)). |
| 55 | + - intros x xs Ih ineq. |
| 56 | + exact (x,, (xs,, (idpath (cons x xs)))). |
| 57 | + Qed. |
| 58 | + |
| 59 | + Lemma length_in {X : UU} (l : list X) (x : X) (inn : is_in x l) : 0 < length l. |
| 60 | + Proof. |
| 61 | + revert l inn. |
| 62 | + use list_ind. |
| 63 | + - intros inn. apply fromempty. exact inn. |
| 64 | + - cbv beta. intros. |
| 65 | + apply idpath. |
| 66 | + Qed. |
| 67 | + |
| 68 | +End Length. |
| 69 | + |
| 70 | + |
| 71 | +Section DistinctList. |
| 72 | + |
| 73 | + Definition distinctterms {X : UU} : (list X) → UU. |
| 74 | + Proof. |
| 75 | + use list_ind. |
| 76 | + - exact unit. |
| 77 | + - intros. |
| 78 | + exact (X0 × ¬(is_in x xs)). |
| 79 | + Defined. |
| 80 | + |
| 81 | + Definition hdistinct {X : UU} : (list X) → hProp := (λ l : (list X), ∥distinctterms l∥). |
| 82 | + |
| 83 | +End DistinctList. |
| 84 | + |
| 85 | +Section Filter. |
| 86 | + |
| 87 | + Definition filter_ex_fun {X : UU} (d : isdeceq X) (x : X) : X → list X → list X. |
| 88 | + Proof. |
| 89 | + intros x0 l1. |
| 90 | + induction (d x x0). |
| 91 | + - exact l1. |
| 92 | + - exact (cons x0 l1). |
| 93 | + Defined. |
| 94 | + |
| 95 | + Definition filter_ex {X : UU} (d : isdeceq X) (x : X) (l : list X) : list X := |
| 96 | + (@foldr X (list X) (filter_ex_fun d x) nil l). |
| 97 | + |
| 98 | + Definition filter_ex_nil {X : UU} (d : isdeceq X) (x : X) (l : list X) : (filter_ex d x nil) = nil. |
| 99 | + Proof. |
| 100 | + apply idpath. |
| 101 | + Qed. |
| 102 | + |
| 103 | + |
| 104 | + Definition filter_ex_cons1 {X : UU} (d : isdeceq X) (x : X) (l : list X) : (filter_ex d x (cons x l)) = (filter_ex d x l). |
| 105 | + Proof. |
| 106 | + set (q:= foldr_cons (filter_ex_fun d x) nil x l). |
| 107 | + unfold filter_ex; induction (pathsinv0 q). |
| 108 | + unfold filter_ex_fun; induction (d x x). |
| 109 | + - apply idpath. |
| 110 | + - apply fromempty, b, idpath. |
| 111 | + Defined. |
| 112 | + |
| 113 | + Definition filter_ex_cons2 {X : UU} (d : isdeceq X) (x x0 : X) (l : list X) (nin : ¬ (x = x0)) : (filter_ex d x (cons x0 l)) = cons x0 (filter_ex d x l). |
| 114 | + Proof. |
| 115 | + set (q := foldr_cons (filter_ex_fun d x) nil x0 l). |
| 116 | + unfold filter_ex; induction (pathsinv0 q). |
| 117 | + unfold filter_ex_fun; induction (d x x0). |
| 118 | + - apply fromempty, nin, a. |
| 119 | + - apply idpath. |
| 120 | + Defined. |
| 121 | + |
| 122 | + Lemma xninfilter_ex {X : UU} (d : isdeceq X) (x : X) (l : list X) : ¬ is_in x (filter_ex d x l). |
| 123 | + Proof. |
| 124 | + revert l. |
| 125 | + use list_ind. |
| 126 | + - intros is_in. |
| 127 | + exact is_in. |
| 128 | + - cbv beta. |
| 129 | + intros x0 xs Ih. |
| 130 | + induction (d x x0). |
| 131 | + + induction a. induction (pathsinv0 (filter_ex_cons1 d x xs)). exact Ih. |
| 132 | + + induction (pathsinv0 (filter_ex_cons2 d x x0 xs b)). intros [lst | elm]. |
| 133 | + * exact (Ih lst). |
| 134 | + * exact (b elm). |
| 135 | + Defined. |
| 136 | + |
| 137 | + Lemma filter_exltlist1 {X : UU} (d : isdeceq X) (x : X) (l : list X) : (length (filter_ex d x l)) ≤ (length l). |
| 138 | + Proof. |
| 139 | + revert l. |
| 140 | + use list_ind. |
| 141 | + - use isreflnatleh. |
| 142 | + - cbv beta. intros x0 xs Ih. |
| 143 | + induction (d x x0). |
| 144 | + + induction a. |
| 145 | + induction (pathsinv0 (filter_ex_cons1 d x xs)). |
| 146 | + apply natlehtolehs; exact Ih. |
| 147 | + + induction (pathsinv0 (filter_ex_cons2 d x x0 xs b)). |
| 148 | + exact Ih. |
| 149 | + Qed. |
| 150 | + |
| 151 | + Lemma istransnatlth {n m k : nat} : n < m → (m < k) → (n < k). |
| 152 | + Proof. |
| 153 | + intros inq1 inq2. |
| 154 | + apply (istransnatgth k m n). |
| 155 | + - exact inq2. |
| 156 | + - exact inq1. |
| 157 | + Qed. |
| 158 | + |
| 159 | + Lemma natlthnsnmtonm {n m : nat} : (S n < m) → (n < m). |
| 160 | + Proof. |
| 161 | + intros. |
| 162 | + exact (istransnatlth (natlthnsn n) X). |
| 163 | + Qed. |
| 164 | + |
| 165 | + Lemma filter_exltlist2 {X : UU} (d : isdeceq X) (x : X) (l : list X) (inn : is_in x l) : (length (filter_ex d x l)) < (length l). |
| 166 | + Proof. |
| 167 | + revert l inn. |
| 168 | + use list_ind; cbv beta. |
| 169 | + - intros. apply fromempty. exact inn. |
| 170 | + - intros x0 xs Ih inn. |
| 171 | + destruct inn as [in' | elm]. |
| 172 | + + set (q := (Ih in')). |
| 173 | + induction (d x x0). |
| 174 | + * induction a. induction (pathsinv0 (filter_ex_cons1 d x xs)). |
| 175 | + apply natlthtolths. exact q. |
| 176 | + * induction (pathsinv0 (filter_ex_cons2 d x x0 xs b)). |
| 177 | + exact q. |
| 178 | + + induction (pathsinv0 elm). |
| 179 | + set (ineq := (filter_exltlist1 d x0 xs)). |
| 180 | + induction (pathsinv0 (filter_ex_cons1 d x0 xs)). |
| 181 | + apply natlehtolthsn. |
| 182 | + exact ineq. |
| 183 | + Qed. |
| 184 | + |
| 185 | + Lemma filter_ex_in {X : UU} (d : isdeceq X) (l : list X) (x x0 : X) (neq : ¬ (x = x0)) : (is_in x0 l) → (is_in x0 (filter_ex d x l)). |
| 186 | + Proof. |
| 187 | + revert l. |
| 188 | + use list_ind; cbv beta. |
| 189 | + - intros nn. apply fromempty. exact nn. |
| 190 | + - intros. |
| 191 | + induction (d x x1). |
| 192 | + + induction a. induction (pathsinv0 (filter_ex_cons1 d x xs)). |
| 193 | + destruct X1 as [a | b]. |
| 194 | + * exact (X0 a). |
| 195 | + * apply fromempty, neq. exact (pathsinv0 b). |
| 196 | + + induction (pathsinv0 (filter_ex_cons2 d x x1 xs b)). |
| 197 | + destruct X1 as [a | c]. |
| 198 | + * left. |
| 199 | + exact (X0 a). |
| 200 | + * induction (pathsinv0 c). |
| 201 | + right. apply idpath. |
| 202 | + Qed. |
| 203 | + |
| 204 | +End Filter. |
| 205 | + |
| 206 | + |
| 207 | + |
| 208 | +Section Properties. |
| 209 | + |
| 210 | + Lemma eqdecidertomembdecider {X : UU} (d : ∏ (x1 x2 : X), decidable(x1=x2)) : ∏ (x : X) (l : list X), decidable (is_in x l). |
| 211 | + Proof. |
| 212 | + intros x. |
| 213 | + use list_ind. |
| 214 | + - right; intros inn. exact inn. |
| 215 | + - intros x0 xs dec. |
| 216 | + induction dec. |
| 217 | + + left; left. exact a. |
| 218 | + + induction (d x x0). |
| 219 | + * left; right. exact a. |
| 220 | + * right. intros [a | a']. |
| 221 | + -- apply b. exact a. |
| 222 | + -- apply b0. exact a'. |
| 223 | + Defined. |
| 224 | + |
| 225 | + (* An induction principle for lists with distinct terms. *) |
| 226 | + Lemma distinct_list_induction {X : UU} : ∏ (P : list X → UU), |
| 227 | + (P nil) → (∏ (x : X) (xs : (list X)) (d : (distinctterms xs)), (P xs) → ¬(is_in x xs) → (P (cons x xs))) → ∏ (xs : list X) (d : distinctterms xs), (P xs). |
| 228 | + Proof. |
| 229 | + intros P Pnil Ih. |
| 230 | + use list_ind. |
| 231 | + - exact (λ d : _, Pnil). |
| 232 | + - intros x xs X0 d. |
| 233 | + destruct d as [d inn]. |
| 234 | + apply Ih. |
| 235 | + + exact d. |
| 236 | + + exact (X0 d). |
| 237 | + + exact inn. |
| 238 | + Defined. |
| 239 | + |
| 240 | + Lemma pigeonhole_sigma {X : UU} (l1 l2 : list X) (d : ∏ (x1 x2 : X), (decidable (x1=x2))) (dist : distinctterms l2) : (length l1) < (length l2) → (∑ (x : X), (is_in x l2) × (¬ (is_in x l1))). |
| 241 | + Proof. |
| 242 | + revert l2 dist l1. |
| 243 | + use distinct_list_induction. |
| 244 | + - intros l1 ineq. |
| 245 | + apply fromempty. |
| 246 | + exact (negnatlthn0 (length l1) ineq). |
| 247 | + - cbn beta; intros x xs dt Ih nin. |
| 248 | + intros l1 ineq. |
| 249 | + induction (eqdecidertomembdecider d x l1). |
| 250 | + + set (l' := filter_ex d x l1). |
| 251 | + assert (length l' < length xs). |
| 252 | + * apply (natlthlehtrans (length l') (length l1) (length xs)). |
| 253 | + -- exact (filter_exltlist2 d x l1 a). |
| 254 | + -- apply natlthsntoleh. exact ineq. |
| 255 | + * set (pr := (Ih l' X0)). |
| 256 | + destruct pr as [x0 [ixs il']]. |
| 257 | + use tpair. |
| 258 | + -- exact x0. |
| 259 | + -- split. |
| 260 | + left. |
| 261 | + ++ exact ixs. |
| 262 | + ++ intros il1. |
| 263 | + apply il', filter_ex_in. |
| 264 | + ** intros eq. |
| 265 | + induction eq. |
| 266 | + exact (nin ixs). |
| 267 | + ** exact il1. |
| 268 | + + use tpair. |
| 269 | + * exact x. |
| 270 | + * split. |
| 271 | + -- right. apply idpath. |
| 272 | + -- exact b. |
| 273 | + Qed. |
| 274 | +End Properties. |
0 commit comments