@@ -68,9 +68,9 @@ to keep latencies at a minimum.
68
68
69
69
# Run it yourself:
70
70
71
- ## Download Sensor Data
71
+ ## 1. Download Sensor Data
72
72
73
- ### SemanticKitti
73
+ ### 1.1. SemanticKitti
74
74
75
75
We use the same folder structure as the SemanticKitti dataset:
76
76
@@ -92,7 +92,7 @@ curl -s https://raw.githubusercontent.com/UniBwTAS/continuous_clustering/master/
92
92
export KITTI_SEQUENCES_PATH=" $( pwd) /kitti_odometry/dataset/sequences"
93
93
```
94
94
95
- ### Rosbag of our test vehicle VW Touareg
95
+ ### 1.2. Rosbag of our test vehicle VW Touareg
96
96
97
97
Download the rosbag:
98
98
@@ -114,9 +114,9 @@ Available bags:
114
114
- ` gdown 146IaBdEmkfBWdIgGV5HzrEYDTol84a1H ` (0.7GB, [ Manual Download] ( https://drive.google.com/file/d/146IaBdEmkfBWdIgGV5HzrEYDTol84a1H/view?usp=sharing ) )
115
115
- Short recording of German Highway (blurred camera for privacy reasons)
116
116
117
- ## Setup Environment
117
+ ## 2. Setup Environment
118
118
119
- ### Option 1 : Docker + GUI (VNC):
119
+ ### 2.1. Option : Docker + GUI (VNC):
120
120
121
121
This option is the fastest to set up. However, due to missing hardware acceleration in the VNC Docker container for RVIZ
122
122
the rosbag is played at 1/10 speed.
@@ -134,7 +134,7 @@ docker run -d -p 6080:80 -v /dev/shm:/dev/shm -v ${KITTI_SEQUENCES_PATH}:/mnt/ki
134
134
6 . Continue with step "Run Continuous Clustering" (see below) in the terminal opened in step 2. (There you can use the
135
135
clipboard feature of noVNC; tiny arrow on the left of the screen)
136
136
137
- ### Option 2 : Locally on Ubuntu 20.04 (Focal) and ROS Noetic
137
+ ### 2.2. Option : Locally on Ubuntu 20.04 (Focal) and ROS Noetic
138
138
139
139
``` bash
140
140
# install ROS (if not already installed)
@@ -154,7 +154,7 @@ bash /tmp/clone_repositories_and_install_dependencies.sh
154
154
catkin build
155
155
```
156
156
157
- ## Run Continuous Clustering
157
+ ## 3. Run Continuous Clustering
158
158
159
159
``` bash
160
160
# run on kitti odometry dataset
@@ -183,12 +183,12 @@ Scans_ ([arXiv](https://arxiv.org/abs/2206.03190), [GitHub](https://github.com/u
183
183
Under-Segmentation Entropy (USE) for clustering performance and precision / recall / accuracy / F1-Score for ground
184
184
point segmentation.
185
185
186
- ## Results
186
+ ## 1. Evaluation Results
187
187
188
- The following results were obtained at Commit
189
- SHA [ fa3c53b] ( https://github.com/UniBwTAS/continuous_clustering/commit/fa3c53bab51975b06ae5ec3a9e56567729149e4f )
188
+ > [ !NOTE ]
189
+ > The following results were obtained at Commit SHA [ fa3c53b] ( https://github.com/UniBwTAS/continuous_clustering/commit/fa3c53bab51975b06ae5ec3a9e56567729149e4f )
190
190
191
- ### Clustering
191
+ ### 1.1. Clustering
192
192
193
193
| Sequence | USE &mu ; &darr ; / &sigma ; &darr ; | OSE &mu ; &darr ; / &sigma ; &darr ; |
194
194
| :---: | :---: | :---: |
@@ -206,7 +206,7 @@ SHA [fa3c53b](https://github.com/UniBwTAS/continuous_clustering/commit/fa3c53bab
206
206
| 9 | 18.45 / 6.25 | 39.62 / 11.86 |
207
207
| 10 | 20.10 / 8.70 | 34.33 / 12.37 |
208
208
209
- ### Ground Point Segmentation:
209
+ ### 1.2. Ground Point Segmentation:
210
210
211
211
| Sequence | Recall &mu ; &uarr ; / &sigma ; &darr ; | Precision &mu ; &uarr ; / &sigma ; &darr ; | F1-Score &mu ; &uarr ; / &sigma ; &darr ; | Accuracy &mu ; &uarr ; / &sigma ; &darr ; |
212
212
| :---: | :---: | :---: | :---: | :---: |
@@ -224,14 +224,14 @@ SHA [fa3c53b](https://github.com/UniBwTAS/continuous_clustering/commit/fa3c53bab
224
224
| 9 | 95.31 / 4.03 | 88.22 / 5.70 | 91.45 / 3.37 | 91.74 / 3.20 |
225
225
| 10 | 91.62 / 6.79 | 85.76 / 7.22 | 88.33 / 5.45 | 91.83 / 3.63 |
226
226
227
- ## Download/Generate Ground Truth Data
227
+ ## 2. Get Ground Truth Labels
228
228
229
229
In order to evaluate OSE and USE for clustering performance additional labels are required, which are generated from the
230
230
Semantic Kitti Labels and using a euclidean distance-based clustering.
231
231
See [ Issue] ( https://github.com/url-kaist/TRAVEL/issues/6 ) in TRAVEL GitHub repository
232
232
and [ src/evaluation/kitti_evaluation.cpp] ( src/evaluation/kitti_evaluation.cpp ) for more details.
233
233
234
- ### Option 1 : Download pre-generated labels (fastest)
234
+ ### 2.1. Option : Download pre-generated labels (fastest)
235
235
236
236
``` bash
237
237
cd /tmp
@@ -244,7 +244,7 @@ Alternatively download it manually from
244
244
our [ Google Drive] ( https://drive.google.com/file/d/1MOfLbUQcwRMLhRca0bxJMLVriU3G8Tg3/view?usp=sharing ) and unzip it to
245
245
the correct location (in parent directory of ` dataset ` folder).
246
246
247
- ### Option 2 : Generate with GUI & ROS setup (assumes prepared ROS setup, see above, useful for debugging etc.)
247
+ ### 2.2. Option : Generate with GUI & ROS setup (assumes prepared ROS setup, see above, useful for debugging etc.)
248
248
249
249
Generate labels, which are saved to ` ${KITTI_SEQUENCES_PATH}/<sequence>/labels_euclidean_clustering/ `
250
250
@@ -253,10 +253,11 @@ rosrun continuous_clustering gt_label_generator_tool ${KITTI_SEQUENCES_PATH} --n
253
253
```
254
254
255
255
> [ !TIP]
256
- > If you want to visualize the generated ground truth labels in ROS then remove the ` --no-ros ` flag and use just one
257
- thread (default).
256
+ > If you want to visualize the generated ground truth labels in an online fashion then remove the ` --no-ros ` flag and
257
+ > use just one thread (default). You can then subscribe to the corresponding topic in Rviz and visualize the point
258
+ > labels.
258
259
259
- ### Option 3 : Generate without GUI or ROS within Minimal Docker Container
260
+ ### 2.3. Option : Generate without GUI or ROS within Minimal Docker Container
260
261
261
262
``` bash
262
263
# build docker image
@@ -271,9 +272,9 @@ docker run --rm -v ${KITTI_SEQUENCES_PATH}:/mnt/kitti_sequences --name build_no_
271
272
docker stop build_no_ros
272
273
```
273
274
274
- ## Run Evaluation
275
+ ## 3. Run Evaluation
275
276
276
- ### Option 1 : Evaluate with GUI & ROS setup (assumes prepared ROS setup, see above, useful for debugging)
277
+ ### 3.1. Option : Evaluate with GUI & ROS setup (assumes prepared ROS setup; useful for debugging)
277
278
278
279
``` bash
279
280
# run evaluation slowly with visual output
@@ -284,7 +285,7 @@ roslaunch continuous_clustering demo_kitti_folder.launch path:=${KITTI_SEQUENCES
284
285
roslaunch continuous_clustering demo_kitti_folder.launch path:=${KITTI_SEQUENCES_PATH} evaluate-fast:=true
285
286
```
286
287
287
- ### Option 2 : Evaluate without GUI or ROS within Minimal Docker Container
288
+ ### 3.2. Option : Evaluate without GUI or ROS within Minimal Docker Container
288
289
289
290
``` bash
290
291
# build docker image (if not already done)
0 commit comments