Skip to content

DOC - Clean Up Chequing Account Dataset #20

@aryamanbharath

Description

@aryamanbharath

Reformat entries in Chequing Account Dataset so that it is uniform and standardised across all columns. (Eg: All zeros should be zeros non None or N/A, missing values should be N/A etc.). Also need to scale data for each feature using min/max scaler.

  • Normalize numerical features using Min-Max scaling

Columns: eg: Monthly Fee, Cashback %, FX Fee, Interest Rate

Use MinMaxScaler from sklearn.preprocessing.

  • Convert categorical features -> One-hot encode the Account_Type column using pd.get_dummies.

  • Ensure clean and complete data: Handle missing values (fill, drop, or impute), Remove duplicates, validate data types.

  • Export or return the cleaned dataset for model use.

Metadata

Metadata

Labels

DocumentationImprovements or additions to documentation

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions