@@ -126,7 +126,7 @@ def aggregate_NACE21(simulation_in):
126126 dist_temp .append (B2B_demand [j ]/ sum (B2B_demand )* (abs (x )- abs (y .values )) )
127127 # Sector label
128128 if sector in ['I' , 'R' , 'S' ]:
129- ax [0 ,i ].annotate (sector , xy = (x - 2 , y + 2 ), fontsize = 7 )
129+ ax [0 ,i ].annotate (sector , xy = (x - 2 , y + 2 ), fontsize = 6 )
130130 # circle around transport
131131 if sector == 'H' :
132132 from matplotlib import pyplot as plt , patches
@@ -155,8 +155,8 @@ def aggregate_NACE21(simulation_in):
155155datasets = [data_GDP , data_revenue , data_employment ]
156156states = ['x' , 'x' , 'l' ]
157157sizes = [params ['x_0' ], params ['x_0' ], params ['l_0' ]]
158- print_label = [['G45' ,],['G45' ,'N79' , 'R93' ],['G45' ,'N79' , 'R93' ]]
159- offset = [[- 4 ,5 ],[- 4 ,5 ],[- 4 ,5 ]]
158+ print_label = [['G45' , 'H49' , 'N77' ],['G45' ,'N79' , 'R93' , 'I55-56' , 'H49' ],['G45' ,'N79' , 'R93' , 'I55-56' , 'H49 ' ]]
159+ offset = [[- 5 ,5 ],[- 5 ,5 ],[- 5 ,5 ]]
160160ylabels = ['Synthetic GDP\n prediction (%)' , 'Revenue\n prediction (%)' , 'Employment\n prediction (%)' ]
161161
162162#########
@@ -199,7 +199,14 @@ def aggregate_NACE21(simulation_in):
199199 cumsize .append (sizes [k ][get_sector_labels ('NACE64' ).index (sector )]/ sum (sizes [k ]))
200200 # Sector label
201201 if sector in print_label [k ]:
202- ax [k + 1 ,i ].annotate (sector , xy = (x + offset [k ][0 ], y + offset [k ][1 ]), fontsize = 7 )
202+ if ((k == 1 ) & (i == 0 ) & (sector == 'I55-56' )):
203+ pass
204+ elif ((k == 2 ) & (i == 0 ) & (sector == 'I55-56' )):
205+ pass
206+ elif ((k == 2 ) & (i == 2 ) & (sector == 'I55-56' )):
207+ pass
208+ else :
209+ ax [k + 1 ,i ].annotate (sector , xy = (x + offset [k ][0 ], y + offset [k ][1 ]), fontsize = 6 )
203210 # Circle around transport
204211 if ((sector == 'H49' )):
205212 from matplotlib import pyplot as plt , patches
0 commit comments