@@ -5,7 +5,7 @@ using ..NumericalTests: check_gdemo, check_numerical
5
5
using AbstractMCMC: AbstractMCMC
6
6
using Bijectors: Bijectors
7
7
using Distributions: Bernoulli, Beta, Categorical, Dirichlet, Normal, Wishart, sample
8
- using DynamicPPL: DynamicPPL, Sampler
8
+ using DynamicPPL: DynamicPPL
9
9
import ForwardDiff
10
10
using HypothesisTests: ApproximateTwoSampleKSTest, pvalue
11
11
import ReverseDiff
@@ -297,35 +297,12 @@ using Turing
297
297
# check_gdemo(res)
298
298
end
299
299
300
- @testset " hmcda constructor" begin
301
- alg = HMCDA (0.8 , 0.75 )
302
- sampler = Sampler (alg)
303
- @test DynamicPPL. alg_str (sampler) == " HMCDA"
304
-
305
- alg = HMCDA (200 , 0.8 , 0.75 )
306
- sampler = Sampler (alg)
307
- @test DynamicPPL. alg_str (sampler) == " HMCDA"
308
-
309
- @test isa (alg, HMCDA)
310
- @test isa (sampler, Sampler{<: Turing.Inference.Hamiltonian })
311
- end
312
-
313
300
@testset " nuts inference" begin
314
301
alg = NUTS (1000 , 0.8 )
315
302
res = sample (StableRNG (seed), gdemo_default, alg, 5_000 )
316
303
check_gdemo (res)
317
304
end
318
305
319
- @testset " nuts constructor" begin
320
- alg = NUTS (200 , 0.65 )
321
- sampler = Sampler (alg)
322
- @test DynamicPPL. alg_str (sampler) == " NUTS"
323
-
324
- alg = NUTS (0.65 )
325
- sampler = Sampler (alg)
326
- @test DynamicPPL. alg_str (sampler) == " NUTS"
327
- end
328
-
329
306
@testset " check discard" begin
330
307
alg = NUTS (100 , 0.8 )
331
308
@@ -456,7 +433,7 @@ using Turing
456
433
vi = DynamicPPL. VarInfo (gdemo_default)
457
434
vi = DynamicPPL. link (vi, gdemo_default)
458
435
ldf = LogDensityFunction (gdemo_default, vi; adtype= Turing. DEFAULT_ADTYPE)
459
- spl = Sampler ( alg)
436
+ spl = alg
460
437
_, hmc_state = AbstractMCMC. step (Random. default_rng (), ldf, spl)
461
438
# Check that we can obtain the current step size
462
439
@test Turing. Inference. getstepsize (spl, hmc_state) isa Float64
0 commit comments