|
1 |
| -######################################### |
2 |
| -# Default definitions for the interface # |
3 |
| -######################################### |
| 1 | +# This file contains the basic methods for `AbstractMCMC.sample`. |
| 2 | +# The overall aim is that users can call |
| 3 | +# |
| 4 | +# sample(::Model, ::InferenceAlgorithm, N) |
| 5 | +# |
| 6 | +# and have it be (eventually) forwarded to |
| 7 | +# |
| 8 | +# sample(::LogDensityFunction, ::Sampler{InferenceAlgorithm}, N) |
| 9 | +# |
| 10 | +# The former method is more convenient for most users, and has been the 'default' |
| 11 | +# API in Turing. The latter method is what really needs to be used under the hood, |
| 12 | +# because a Model on its own does not fully specify how the log-density should be |
| 13 | +# evaluated (only a LogDensityFunction has that information). The methods defined |
| 14 | +# in this file provide the 'bridge' between these two, and also provide hooks to |
| 15 | +# allow for some special behaviour, e.g. setting the default chain type to |
| 16 | +# MCMCChains.Chains, and also checking the model with DynamicPPL.check_model. |
| 17 | +# |
| 18 | +# Advanced users who want to customise the way their model is executed (e.g. by |
| 19 | +# using different types of VarInfo) can construct their own LogDensityFunction |
| 20 | +# and call `sample(ldf, spl, N)` themselves. |
| 21 | + |
| 22 | +# Because this is a pain to implement all at once, we do it for one sampler at a time. |
| 23 | +# This type tells us which samplers have been 'updated' to the new interface. |
| 24 | + |
| 25 | +# TODO: Eventually, we want to broaden this to InferenceAlgorithm |
| 26 | +const LDFCompatibleAlgorithm = Union{Hamiltonian} |
| 27 | +# TODO: Eventually, we want to broaden this to |
| 28 | +# Union{Sampler{<:InferenceAlgorithm},RepeatSampler}. |
| 29 | +const LDFCompatibleSampler = Union{Sampler{<:LDFCompatibleAlgorithm}} |
| 30 | + |
| 31 | +# The main method: without ensemble sampling |
| 32 | +# NOTE: When updating this method, please make sure to also update the |
| 33 | +# corresponding one with ensemble sampling, right below it. |
| 34 | +function AbstractMCMC.sample( |
| 35 | + rng::Random.AbstractRNG, |
| 36 | + ldf::LogDensityFunction, |
| 37 | + spl::LDFCompatibleSampler, |
| 38 | + N::Integer; |
| 39 | + check_model::Bool=true, |
| 40 | + chain_type=MCMCChains.Chains, |
| 41 | + progress=PROGRESS[], |
| 42 | + resume_from=nothing, |
| 43 | + initial_state=DynamicPPL.loadstate(resume_from), |
| 44 | + kwargs..., |
| 45 | +) |
| 46 | + # TODO: Right now, only generic checks are run. We could in principle |
| 47 | + # specialise this to check for e.g. discrete variables with HMC |
| 48 | + check_model && DynamicPPL.check_model(ldf.model; error_on_failure=true) |
| 49 | + # Some samplers need to update the kwargs with additional information, |
| 50 | + # e.g. HMC. |
| 51 | + new_kwargs = update_sample_kwargs(spl, N, kwargs) |
| 52 | + # Forward to the main sampling function |
| 53 | + return AbstractMCMC.mcmcsample( |
| 54 | + rng, |
| 55 | + ldf, |
| 56 | + spl, |
| 57 | + N; |
| 58 | + initial_state=initial_state, |
| 59 | + chain_type=chain_type, |
| 60 | + progress=progress, |
| 61 | + new_kwargs..., |
| 62 | + ) |
| 63 | +end |
| 64 | + |
| 65 | +# The main method: with ensemble sampling |
| 66 | +# NOTE: When updating this method, please make sure to also update the |
| 67 | +# corresponding one without ensemble sampling, right above it. |
| 68 | +function AbstractMCMC.sample( |
| 69 | + rng::Random.AbstractRNG, |
| 70 | + ldf::LogDensityFunction, |
| 71 | + spl::LDFCompatibleSampler, |
| 72 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 73 | + N::Integer, |
| 74 | + n_chains::Integer; |
| 75 | + check_model::Bool=true, |
| 76 | + chain_type=MCMCChains.Chains, |
| 77 | + progress=PROGRESS[], |
| 78 | + resume_from=nothing, |
| 79 | + initial_state=DynamicPPL.loadstate(resume_from), |
| 80 | + kwargs..., |
| 81 | +) |
| 82 | + # TODO: Right now, only generic checks are run. We could in principle |
| 83 | + # specialise this to check for e.g. discrete variables with HMC |
| 84 | + check_model && DynamicPPL.check_model(ldf.model; error_on_failure=true) |
| 85 | + # Some samplers need to update the kwargs with additional information, |
| 86 | + # e.g. HMC. |
| 87 | + new_kwargs = update_sample_kwargs(spl, N, kwargs) |
| 88 | + # Forward to the main sampling function |
| 89 | + return AbstractMCMC.mcmcsample( |
| 90 | + rng, |
| 91 | + ldf, |
| 92 | + spl, |
| 93 | + ensemble, |
| 94 | + N, |
| 95 | + n_chains; |
| 96 | + initial_state=initial_state, |
| 97 | + chain_type=chain_type, |
| 98 | + progress=progress, |
| 99 | + new_kwargs..., |
| 100 | + ) |
| 101 | +end |
| 102 | + |
| 103 | +# This method should be in DynamicPPL. We will move it there when all the |
| 104 | +# Turing samplers have been updated. |
| 105 | +""" |
| 106 | + initialise_varinfo(rng, model, sampler, initial_params=nothing, link=false) |
| 107 | +
|
| 108 | +Return a suitable initial varinfo object, which will be used when sampling |
| 109 | +`model` with `sampler`. If given, the initial parameter values will be set in |
| 110 | +the varinfo object. Also performs linking if requested. |
| 111 | +
|
| 112 | +# Arguments |
| 113 | +- `rng::Random.AbstractRNG`: Random number generator. |
| 114 | +- `model::Model`: Model for which we want to create a varinfo object. |
| 115 | +- `sampler::AbstractSampler`: Sampler which will make use of the varinfo object. |
| 116 | +- `initial_params::Union{AbstractVector,Nothing}`: Initial parameter values to |
| 117 | +be set in the varinfo object. Note that these should be given in unconstrained |
| 118 | +space. |
| 119 | +- `link::Bool`: Whether to link the varinfo. |
| 120 | +
|
| 121 | +# Returns |
| 122 | +- `AbstractVarInfo`: Default varinfo object for the given `model` and `sampler`. |
| 123 | +""" |
| 124 | +function initialise_varinfo( |
| 125 | + rng::Random.AbstractRNG, |
| 126 | + model::Model, |
| 127 | + sampler::LDFCompatibleSampler, |
| 128 | + initial_params::Union{AbstractVector,Nothing}=nothing, |
| 129 | + # We could set `link=requires_unconstrained_space(sampler)`, but that would |
| 130 | + # preclude moving `initialise_varinfo` to DynamicPPL, since |
| 131 | + # `requires_unconstrained_space` is defined in Turing (unless that function |
| 132 | + # is also moved to DynamicPPL, or AbstractMCMC) |
| 133 | + link::Bool=false, |
| 134 | +) |
| 135 | + init_sampler = DynamicPPL.initialsampler(sampler) |
| 136 | + vi = DynamicPPL.typed_varinfo(rng, model, init_sampler) |
| 137 | + |
| 138 | + # Update the parameters if provided. |
| 139 | + if initial_params !== nothing |
| 140 | + # Note that initialize_parameters!! expects parameters in to be |
| 141 | + # specified in unconstrained space. TODO: Make this more generic. |
| 142 | + vi = DynamicPPL.initialize_parameters!!(vi, initial_params, model) |
| 143 | + # Update joint log probability. |
| 144 | + # This is a quick fix for https://github.com/TuringLang/Turing.jl/issues/1588 |
| 145 | + # and https://github.com/TuringLang/Turing.jl/issues/1563 |
| 146 | + # to avoid that existing variables are resampled |
| 147 | + vi = last(DynamicPPL.evaluate!!(model, vi, DynamicPPL.DefaultContext())) |
| 148 | + end |
| 149 | + |
| 150 | + return if link |
| 151 | + DynamicPPL.link(vi, model) |
| 152 | + else |
| 153 | + vi |
| 154 | + end |
| 155 | +end |
| 156 | + |
| 157 | +########################################################################## |
| 158 | +### Everything below this is boring boilerplate for the new interface. ### |
| 159 | +########################################################################## |
| 160 | + |
| 161 | +function AbstractMCMC.sample( |
| 162 | + model::Model, alg::LDFCompatibleAlgorithm, N::Integer; kwargs... |
| 163 | +) |
| 164 | + return AbstractMCMC.sample(Random.default_rng(), model, alg, N; kwargs...) |
| 165 | +end |
| 166 | + |
| 167 | +function AbstractMCMC.sample( |
| 168 | + ldf::LogDensityFunction, alg::LDFCompatibleAlgorithm, N::Integer; kwargs... |
| 169 | +) |
| 170 | + return AbstractMCMC.sample(Random.default_rng(), ldf, alg, N; kwargs...) |
| 171 | +end |
| 172 | + |
| 173 | +function AbstractMCMC.sample( |
| 174 | + model::Model, spl::Sampler{<:LDFCompatibleAlgorithm}, N::Integer; kwargs... |
| 175 | +) |
| 176 | + return AbstractMCMC.sample(Random.default_rng(), model, spl, N; kwargs...) |
| 177 | +end |
| 178 | + |
| 179 | +function AbstractMCMC.sample( |
| 180 | + ldf::LogDensityFunction, spl::Sampler{<:LDFCompatibleAlgorithm}, N::Integer; kwargs... |
| 181 | +) |
| 182 | + return AbstractMCMC.sample(Random.default_rng(), ldf, spl, N; kwargs...) |
| 183 | +end |
| 184 | + |
| 185 | +function AbstractMCMC.sample( |
| 186 | + rng::Random.AbstractRNG, |
| 187 | + ldf::LogDensityFunction, |
| 188 | + alg::LDFCompatibleAlgorithm, |
| 189 | + N::Integer; |
| 190 | + kwargs..., |
| 191 | +) |
| 192 | + return AbstractMCMC.sample(rng, ldf, Sampler(alg), N; kwargs...) |
| 193 | +end |
| 194 | + |
| 195 | +function AbstractMCMC.sample( |
| 196 | + rng::Random.AbstractRNG, |
| 197 | + model::Model, |
| 198 | + alg::LDFCompatibleAlgorithm, |
| 199 | + N::Integer; |
| 200 | + kwargs..., |
| 201 | +) |
| 202 | + return AbstractMCMC.sample(rng, model, Sampler(alg), N; kwargs...) |
| 203 | +end |
| 204 | + |
| 205 | +function AbstractMCMC.sample( |
| 206 | + rng::Random.AbstractRNG, |
| 207 | + model::Model, |
| 208 | + spl::Sampler{<:LDFCompatibleAlgorithm}, |
| 209 | + N::Integer; |
| 210 | + kwargs..., |
| 211 | +) |
| 212 | + initial_params = get(kwargs, :initial_params, nothing) |
| 213 | + link = requires_unconstrained_space(spl) |
| 214 | + vi = initialise_varinfo(rng, model, spl, initial_params, link) |
| 215 | + ldf = LogDensityFunction(model, vi; adtype=get_adtype(spl)) |
| 216 | + return AbstractMCMC.sample(rng, ldf, spl, N; kwargs...) |
| 217 | +end |
| 218 | + |
| 219 | +function AbstractMCMC.sample( |
| 220 | + model::Model, |
| 221 | + alg::LDFCompatibleAlgorithm, |
| 222 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 223 | + N::Integer, |
| 224 | + n_chains::Integer; |
| 225 | + kwargs..., |
| 226 | +) |
| 227 | + return AbstractMCMC.sample( |
| 228 | + Random.default_rng(), model, alg, ensemble, N, n_chains; kwargs... |
| 229 | + ) |
| 230 | +end |
| 231 | + |
| 232 | +function AbstractMCMC.sample( |
| 233 | + ldf::LogDensityFunction, |
| 234 | + alg::LDFCompatibleAlgorithm, |
| 235 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 236 | + N::Integer, |
| 237 | + n_chains::Integer; |
| 238 | + kwargs..., |
| 239 | +) |
| 240 | + return AbstractMCMC.sample( |
| 241 | + Random.default_rng(), ldf, alg, ensemble, N, n_chains; kwargs... |
| 242 | + ) |
| 243 | +end |
| 244 | + |
| 245 | +function AbstractMCMC.sample( |
| 246 | + model::Model, |
| 247 | + spl::Sampler{<:LDFCompatibleAlgorithm}, |
| 248 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 249 | + N::Integer, |
| 250 | + n_chains::Integer; |
| 251 | + kwargs..., |
| 252 | +) |
| 253 | + return AbstractMCMC.sample( |
| 254 | + Random.default_rng(), model, spl, ensemble, N, n_chains; kwargs... |
| 255 | + ) |
| 256 | +end |
| 257 | + |
| 258 | +function AbstractMCMC.sample( |
| 259 | + ldf::LogDensityFunction, |
| 260 | + spl::Sampler{<:LDFCompatibleAlgorithm}, |
| 261 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 262 | + N::Integer, |
| 263 | + n_chains::Integer; |
| 264 | + kwargs..., |
| 265 | +) |
| 266 | + return AbstractMCMC.sample( |
| 267 | + Random.default_rng(), ldf, spl, ensemble, N, n_chains; kwargs... |
| 268 | + ) |
| 269 | +end |
| 270 | + |
| 271 | +function AbstractMCMC.sample( |
| 272 | + rng::Random.AbstractRNG, |
| 273 | + ldf::LogDensityFunction, |
| 274 | + alg::LDFCompatibleAlgorithm, |
| 275 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 276 | + N::Integer, |
| 277 | + n_chains::Integer; |
| 278 | + kwargs..., |
| 279 | +) |
| 280 | + return AbstractMCMC.sample(rng, ldf, Sampler(alg), ensemble, N, n_chains; kwargs...) |
| 281 | +end |
| 282 | + |
| 283 | +function AbstractMCMC.sample( |
| 284 | + rng::Random.AbstractRNG, |
| 285 | + model::Model, |
| 286 | + alg::LDFCompatibleAlgorithm, |
| 287 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 288 | + N::Integer, |
| 289 | + n_chains::Integer; |
| 290 | + kwargs..., |
| 291 | +) |
| 292 | + return AbstractMCMC.sample(rng, model, Sampler(alg), ensemble, N, n_chains; kwargs...) |
| 293 | +end |
| 294 | + |
| 295 | +function AbstractMCMC.sample( |
| 296 | + rng::Random.AbstractRNG, |
| 297 | + model::Model, |
| 298 | + spl::LDFCompatibleSampler, |
| 299 | + ensemble::AbstractMCMC.AbstractMCMCEnsemble, |
| 300 | + N::Integer, |
| 301 | + n_chains::Integer; |
| 302 | + kwargs..., |
| 303 | +) |
| 304 | + initial_params = get(kwargs, :initial_params, nothing) |
| 305 | + link = requires_unconstrained_space(spl) |
| 306 | + vi = initialise_varinfo(rng, model, spl, initial_params, link) |
| 307 | + ldf = LogDensityFunction(model, vi; adtype=get_adtype(spl)) |
| 308 | + return AbstractMCMC.sample(rng, ldf, spl, ensemble, N, n_chains; kwargs...) |
| 309 | +end |
| 310 | + |
| 311 | +######################################################## |
| 312 | +# DEPRECATED SAMPLE METHODS # |
| 313 | +######################################################## |
| 314 | +# All the code below should eventually be removed. # |
| 315 | +# We need to keep it here for now so that the # |
| 316 | +# inference algorithms that _haven't_ yet been updated # |
| 317 | +# to take LogDensityFunction still work. # |
| 318 | +######################################################## |
4 | 319 |
|
5 | 320 | function AbstractMCMC.sample(
|
6 | 321 | model::AbstractModel, alg::InferenceAlgorithm, N::Integer; kwargs...
|
|
0 commit comments