Skip to content

Commit fb464ba

Browse files
Update Overview_IDZSC_and_HDZSC.md
1 parent b814859 commit fb464ba

File tree

1 file changed

+2
-4
lines changed

1 file changed

+2
-4
lines changed

docs/Overview_IDZSC_and_HDZSC.md

Lines changed: 2 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -100,6 +100,7 @@ The `iterative_double_zeroshot_classification` function orchestrates the followi
100100
* The function uses the `prompt_build` DataFrame and the specified `prompt_ids_list` to construct prompts.
101101
* Each prompt consists of blocks defined in `prompt_block_cols` (e.g., "Block\_A\_Introduction", "Block\_C\_Definition").
102102
* These blocks are filled with instructions, definitions, and task descriptions to guide the LLM.
103+
* Every final prompt is than combined with the text and optional context of the current unit of analysis.
103104

104105
2. **LLM Interaction:**
105106
* The prompts are sent to the LLM via the specified `client` and `model`.
@@ -110,8 +111,5 @@ The `iterative_double_zeroshot_classification` function orchestrates the followi
110111
* It validates the output against the expected `output_types` (e.g., numeric, list) and uses `label_codes` to convert the predictions into a standardized format.
111112

112113
4. **Combining Strategies:**
113-
* If multiple prompts are used or if the iterative process generates multiple predictions, the function combines these predictions using the specified `combining_strategies`.
114-
* **`set_zeroshot_parameters`:** This function is used to configure the `parameter` dictionary that is passed to `iterative_double_zeroshot_classification`. It sets up the prompts, defines the valid labels, and specifies the output types.
115-
* **`get_demo_prompt_structure`:** This function provides example prompt structures for demonstration purposes.
116-
* **`setup_demo_model`:** This function sets up the LLM client and model that will be used for classification.
114+
* If the classifier generates divergent predictions when processing a single unit task (using the “double classification per step” feature), the function combines these predictions using the specified `combining_strategies`.
117115

0 commit comments

Comments
 (0)