Skip to content

Trouble using 10MPaper model for inference #17

@psaegert

Description

@psaegert

Hi there,

I'm trying to use the model pretrained on the 10M dataset for inference via the fit_func.ipynb notebook.

Since the notebook loads the 100M-dataset model by default, I changed

## Load equation configuration and architecture configuration
import omegaconf
- with open('100M/eq_setting.json', 'r') as json_file:
+ with open('10MPaper/equation_config.json', 'r') as json_file:
  eq_setting = json.load(json_file)

- cfg = omegaconf.OmegaConf.load("100M/config.yaml")
+ cfg = omegaconf.OmegaConf.load("10MPaper/config.yaml")

but now this cell

params_fit = FitParams(word2id=eq_setting["word2id"], 
                            id2word={int(k): v for k,v in eq_setting["id2word"].items()}, 
                            una_ops=eq_setting["una_ops"], 
                            bin_ops=eq_setting["bin_ops"], 
                            total_variables=list(eq_setting["total_variables"]),  
                            total_coefficients=list(eq_setting["total_coefficients"]),
                            rewrite_functions=list(eq_setting["rewrite_functions"]),
                            bfgs=bfgs,
                            beam_size=cfg.inference.beam_size #This parameter is a tradeoff between accuracy and fitting time
                            )

results in a KeyError:

---------------------------------------------------------------------------
KeyError                                  Traceback (most recent call last)
/tmp/ipykernel_10858/898078201.py in <module>
----> 1 params_fit = FitParams(word2id=eq_setting["word2id"], 
      2                             id2word={int(k): v for k,v in eq_setting["id2word"].items()},
      3                             una_ops=eq_setting["una_ops"],
      4                             bin_ops=eq_setting["bin_ops"],
      5                             total_variables=list(eq_setting["total_variables"]),

KeyError: 'word2id'

Can anyone replicate this error? How can I use the 10M-dataset model for inference?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions