Skip to content

有run起来的吗,一直在plan循环 #10

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
12 tasks
JasonWei1366 opened this issue May 27, 2025 · 1 comment
Closed
12 tasks

有run起来的吗,一直在plan循环 #10

JasonWei1366 opened this issue May 27, 2025 · 1 comment

Comments

@JasonWei1366
Copy link

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. [→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. Use deep_analyzer_agent to summarize the research paper.
  2. Provide the summary as the final answer.

2025-05-27 17:18:02 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. |→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. | ] Use deep_analyzer_agent to summarize the research paper.
  2. | ] Provide the summary as the final answer.
    2025-05-27 17:18:02 - logger:INFO: logger.py:77 - [Step 15: Duration 4.23 seconds| Input tokens: 68,296 | Output tokens: 1,973]
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 16 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    Output message of the LLM: ─────────────────────────────────────────────────────────────────────────
    ModelResponse(id='chatcmpl-30b78c6d-c2f0-408b-90e2-095f637d3bf3', created=1748337482,
    model='gemini-2.5-pro-preview-05-06', object='chat.completion', system_fingerprint=None,
    choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content=None,
    role='assistant', tool_calls=[ChatCompletionMessageToolCall(index=0,
    function=Function(arguments='{"plan_id": "ai_agent_research_plan", "step_index": 0, "action":
    "mark_step", "step_status": "in_progress"}', name='planning'),
    id='call_10d2456b-19b9-43d5-9e93-922c05ec2186', type='function')], function_call=None,
    provider_specific_fields=None))], usage=Usage(completion_tokens=241, prompt_tokens=6930,
    total_tokens=7171,
    completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None,
    audio_tokens=None, reasoning_tokens=197, rejected_prediction_tokens=None, text_tokens=44),
    prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None,
    text_tokens=6930, image_tokens=None)), vertex_ai_grounding_metadata=[], vertex_ai_safety_results=[],
    vertex_ai_citation_metadata=[])
    ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
    │ Calling tool: 'planning' with arguments: {'plan_id': 'ai_agent_research_plan', 'step_index': 0, │
    │ 'action': 'mark_step', 'step_status': 'in_progress'} │
    ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
    2025-05-27 17:18:08 - logger:INFO: planning.py:361 - Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. [→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. Use deep_analyzer_agent to summarize the research paper.
  2. Provide the summary as the final answer.

2025-05-27 17:18:08 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. |→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. | ] Use deep_analyzer_agent to summarize the research paper.
  2. | ] Provide the summary as the final answer.
    2025-05-27 17:18:08 - logger:INFO: logger.py:77 - [Step 16: Duration 5.76 seconds| Input tokens: 75,226 | Output tokens: 2,214]
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 17 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    Output message of the LLM: ─────────────────────────────────────────────────────────────────────────
    ModelResponse(id='chatcmpl-e0e5f5d6-d749-4beb-8680-d4f0161671dc', created=1748337488,
    model='gemini-2.5-pro-preview-05-06', object='chat.completion', system_fingerprint=None,
    choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content=None,
    role='assistant', tool_calls=[ChatCompletionMessageToolCall(index=0,
    function=Function(arguments='{"action": "mark_step", "step_index": 0, "plan_id":
    "ai_agent_research_plan", "step_status": "in_progress"}', name='planning'),
    id='call_9b5d9aa4-9c30-49ed-977b-7497f052db38', type='function')], function_call=None,
    provider_specific_fields=None))], usage=Usage(completion_tokens=143, prompt_tokens=7228,
    total_tokens=7371,
    completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None,
    audio_tokens=None, reasoning_tokens=99, rejected_prediction_tokens=None, text_tokens=44),
    prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None,
    text_tokens=7228, image_tokens=None)), vertex_ai_grounding_metadata=[], vertex_ai_safety_results=[],
    vertex_ai_citation_metadata=[])
    ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
    │ Calling tool: 'planning' with arguments: {'action': 'mark_step', 'step_index': 0, 'plan_id': │
    │ 'ai_agent_research_plan', 'step_status': 'in_progress'} │
    ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
    2025-05-27 17:18:13 - logger:INFO: planning.py:361 - Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. [→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. Use deep_analyzer_agent to summarize the research paper.
  2. Provide the summary as the final answer.

2025-05-27 17:18:13 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. |→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. | ] Use deep_analyzer_agent to summarize the research paper.
  2. | ] Provide the summary as the final answer.
    2025-05-27 17:18:13 - logger:INFO: logger.py:77 - [Step 17: Duration 4.73 seconds| Input tokens: 82,454 | Output tokens: 2,357]
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 18 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    Output message of the LLM: ─────────────────────────────────────────────────────────────────────────
    ModelResponse(id='chatcmpl-3ff43a23-7cfb-4ba3-b8f2-56108bf5d65a', created=1748337493,
    model='gemini-2.5-pro-preview-05-06', object='chat.completion', system_fingerprint=None,
    choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content=None,
    role='assistant', tool_calls=[ChatCompletionMessageToolCall(index=0,
    function=Function(arguments='{"step_index": 0, "plan_id": "ai_agent_research_plan", "step_status":
    "in_progress", "action": "mark_step"}', name='planning'),
    id='call_855068ee-b756-46d2-863b-08264d9b09ef', type='function')], function_call=None,
    provider_specific_fields=None))], usage=Usage(completion_tokens=191, prompt_tokens=7524,
    total_tokens=7715,
    completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None,
    audio_tokens=None, reasoning_tokens=147, rejected_prediction_tokens=None, text_tokens=44),
    prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None,
    text_tokens=7524, image_tokens=None)), vertex_ai_grounding_metadata=[], vertex_ai_safety_results=[],
    vertex_ai_citation_metadata=[])
    ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
    │ Calling tool: 'planning' with arguments: {'step_index': 0, 'plan_id': 'ai_agent_research_plan', │
    │ 'step_status': 'in_progress', 'action': 'mark_step'} │
    ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
    2025-05-27 17:18:18 - logger:INFO: planning.py:361 - Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. [→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. Use deep_analyzer_agent to summarize the research paper.
  2. Provide the summary as the final answer.

2025-05-27 17:18:18 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. |→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. | ] Use deep_analyzer_agent to summarize the research paper.
  2. | ] Provide the summary as the final answer.
    2025-05-27 17:18:18 - logger:INFO: logger.py:77 - [Step 18: Duration 5.10 seconds| Input tokens: 89,978 | Output tokens: 2,548]
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 19 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    Output message of the LLM: ─────────────────────────────────────────────────────────────────────────
    ModelResponse(id='chatcmpl-92bc9b05-b27c-4641-b3f7-fefc6bad4ec0', created=1748337498,
    model='gemini-2.5-pro-preview-05-06', object='chat.completion', system_fingerprint=None,
    choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content=None,
    role='assistant', tool_calls=[ChatCompletionMessageToolCall(index=0,
    function=Function(arguments='{"step_index": 0, "step_status": "in_progress", "plan_id":
    "ai_agent_research_plan", "action": "mark_step"}', name='planning'),
    id='call_ecdb8f81-adda-4ca3-83d0-d4ef33c70cf2', type='function')], function_call=None,
    provider_specific_fields=None))], usage=Usage(completion_tokens=105, prompt_tokens=7821,
    total_tokens=7926,
    completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None,
    audio_tokens=None, reasoning_tokens=61, rejected_prediction_tokens=None, text_tokens=44),
    prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None,
    text_tokens=7821, image_tokens=None)), vertex_ai_grounding_metadata=[], vertex_ai_safety_results=[],
    vertex_ai_citation_metadata=[])
    ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
    │ Calling tool: 'planning' with arguments: {'step_index': 0, 'step_status': 'in_progress', │
    │ 'plan_id': 'ai_agent_research_plan', 'action': 'mark_step'} │
    ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
    2025-05-27 17:18:22 - logger:INFO: planning.py:361 - Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. [→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. Use deep_analyzer_agent to summarize the research paper.
  2. Provide the summary as the final answer.

2025-05-27 17:18:22 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. |→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. | ] Use deep_analyzer_agent to summarize the research paper.
  2. | ] Provide the summary as the final answer.
    2025-05-27 17:18:22 - logger:INFO: logger.py:77 - [Step 19: Duration 4.36 seconds| Input tokens: 97,799 | Output tokens: 2,653]
    ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ Step 20 ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    Output message of the LLM: ─────────────────────────────────────────────────────────────────────────
    ModelResponse(id='chatcmpl-e5eeb4f6-fb86-43cd-aba4-e2ea104ec072', created=1748337502,
    model='gemini-2.5-pro-preview-05-06', object='chat.completion', system_fingerprint=None,
    choices=[Choices(finish_reason='tool_calls', index=0, message=Message(content=None,
    role='assistant', tool_calls=[ChatCompletionMessageToolCall(index=0,
    function=Function(arguments='{"step_status": "in_progress", "step_index": 0, "action": "mark_step",
    "plan_id": "ai_agent_research_plan"}', name='planning'),
    id='call_e92f19e9-754c-4eb6-b7d9-4304816655c3', type='function')], function_call=None,
    provider_specific_fields=None))], usage=Usage(completion_tokens=138, prompt_tokens=8112,
    total_tokens=8250,
    completion_tokens_details=CompletionTokensDetailsWrapper(accepted_prediction_tokens=None,
    audio_tokens=None, reasoning_tokens=94, rejected_prediction_tokens=None, text_tokens=44),
    prompt_tokens_details=PromptTokensDetailsWrapper(audio_tokens=None, cached_tokens=None,
    text_tokens=8112, image_tokens=None)), vertex_ai_grounding_metadata=[], vertex_ai_safety_results=[],
    vertex_ai_citation_metadata=[])
    ╭──────────────────────────────────────────────────────────────────────────────────────────────────╮
    │ Calling tool: 'planning' with arguments: {'step_status': 'in_progress', 'step_index': 0, │
    │ 'action': 'mark_step', 'plan_id': 'ai_agent_research_plan'} │
    ╰──────────────────────────────────────────────────────────────────────────────────────────────────╯
    2025-05-27 17:18:26 - logger:INFO: planning.py:361 - Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. [→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. Use deep_analyzer_agent to summarize the research paper.
  2. Provide the summary as the final answer.

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)
2025-05-27 17:18:26 - logger:INFO: logger.py:77 - Observations: Step 0 updated successfully in plan 'ai_agent_research_plan'.

Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)
Plan: Find and summarize the latest AI Agent research paper (ID: ai_agent_research_plan)

Progress: 0/3 steps completed (0.0%)
Status: 0 completed, 1 in progress, 0 blocked, 2 not started

Steps:
0. |→] Use deep_researcher_agent to find the latest research paper on 'AI Agent'.

  1. | ] Use deep_analyzer_agent to summarize the research paper.
  2. | ] Provide the summary as the final answer.
    2025-05-27 17:18:26 - logger:INFO: logger.py:77 - [Step 20: Duration 3.83 seconds| Input tokens: 105,911 | Output tokens: 2,791]
    2025-05-27 17:18:26 - logger:ERROR: error.py:10 - Reached max steps.
    2025-05-27 17:18:26 - logger:INFO: logger.py:77 - [Step 21: Duration 3.84 seconds| Input tokens: 114,023 | Output tokens: 2,929]
    2025-05-27 17:18:26 - logger:INFO: test.py:31 - Result: <coroutine object AsyncMultiStepAgent.provide_final_answer at 0x000001CFC0ACB520>
@DVampire
Copy link
Collaborator

建议planning agent使用claude3.7,目前发现gemini和gpt4o等模型是严格遵循function calling,不会使用json调用子agent,针对这个问题我后面会把子agent也通过function calling调用

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants