Skip to content

Commit 5534730

Browse files
committed
Update
1 parent 7a8c3bc commit 5534730

File tree

2 files changed

+12
-8
lines changed

2 files changed

+12
-8
lines changed

.gitignore

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
__pycache__

README.md

Lines changed: 11 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -1,4 +1,4 @@
1-
# Generative AI Navigation Information for UAV Reconnaissance in Natural Environments
1+
# UAV-GenerativeAI-Navigation-Images
22

33
## Table of Contents
44
- [Overview](#Overview)
@@ -18,11 +18,11 @@
1818
1919
We employ two models: GAN ([pix2pix](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix)) and Diffusion([PITI](https://github.com/PITI-Synthesis/PITI)). The raw data is fed into both models. The Diffusion model utilizes an [guided-diffusion](https://github.com/openai/guided-diffusion) pre-trained model for fine-tuning, while the GAN model is trained from scratch. The generated images are evaluated by a Router, which determines the final output by selecting the best result from either the GAN or Diffusion model.
2020

21-
![architecture](https://github.com/Shengwei0516/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments/blob/main/imgs/architecture.png)
21+
![architecture](imgs/architecture.png)
2222

2323
## Project Structure
2424
```bash
25-
Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments/
25+
UAV-GenerativeAI-Navigation-Images/
2626
├── diffusion/
2727
│ ├── preprocess/
2828
│ ├── pretrained_diffusion/
@@ -57,9 +57,12 @@ Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environme
5757
The `training_dataset` and `testing_dataset` directories contain the datasets provided by the [AI CUP 2024](https://tbrain.trendmicro.com.tw/Competitions/Details/34). You can replace these datasets with your own data by organizing them in the following structure:
5858
* Training Dataset
5959
* `img/`: Contains raw drone images in .jpg format.
60-
![img](https://github.com/Shengwei0516/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments/blob/main/training_dataset/img/TRA_RI_1000000.jpg)
60+
61+
![img](training_dataset/img/TRA_RI_1000000.jpg)
6162
* `label_img/`: Contains black and white images in .png format.
62-
![label_img](https://github.com/Shengwei0516/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments/blob/main/training_dataset/label_img/TRA_RI_1000000.png)
63+
64+
![label_img](training_dataset/label_img/TRA_RI_1000000.png)
65+
6366
* Testing Dataset
6467
* `label_img/`: Contains black and white images in .png format.
6568

@@ -80,10 +83,10 @@ To ensure reproducibility and consistency, the following environment setup is re
8083
## Installation
8184
To get started, follow these steps:
8285

83-
### Step 1. Clone this [Repository](https://github.com/Shengwei0516/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments):
86+
### Step 1. Clone this [Repository](https://github.com/Shengwei-Peng/UAV-GenerativeAI-Navigation-Images):
8487
```bash
85-
git clone https://github.com/Shengwei0516/Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments.git
86-
cd Generative-AI-Navigation-Information-for-UAV-Reconnaissance-in-Natural-Environments
88+
git clone https://github.com/Shengwei-Peng/UAV-GenerativeAI-Navigation-Images.git
89+
cd UAV-GenerativeAI-Navigation-Images
8790
```
8891
### Step 2. Install [PyTorch](https://pytorch.org/):
8992
```bash

0 commit comments

Comments
 (0)