3
3
# # https://bitbucket.org/nsegata/lefse/src/54694b4b0d9e335ff1ecafff8db4f1e0cf7004da/example/run.sh?at=default&fileviewer=file-view-default
4
4
# #
5
5
# #
6
- # # note: ensure script names below match those in the conda install directory, otherwise will error: 'not found':
7
- # # scripts usually visible in ~/miniconda3/envs/lefse/bin/ if was installed to default directory
8
- # #
9
6
10
7
11
8
# Download a 3-classes example (with subclasses and subjects) from huttenhower.sph.harvard.edu
14
11
wget https://github.com/biobakery/biobakery/raw/master/demos/biobakery_demos/data/lefse/input/hmp_small_aerobiosis.txt -O hmp_aerobiosis_small.txt
15
12
16
13
# As using LEfSe through bioconda, need to activate the LEfSe installation:
17
- source activate lefse
14
+ conda activate lefse
18
15
19
16
# Running the LEfSe commands with -h gives the list of available options
20
17
@@ -26,7 +23,7 @@ source activate lefse
26
23
# the value -1 for them.
27
24
# -o 1000000 scales the feature such that the sum (of the same taxonomic leve)
28
25
# is 1M: this is done only for obtaining more meaningful values for the LDA score
29
- lefse-format_input .py hmp_aerobiosis_small.txt hmp_aerobiosis_small.in -c 1 -s 2 -u 3 -o 1000000
26
+ lefse_format_input .py hmp_aerobiosis_small.txt hmp_aerobiosis_small.in -c 1 -s 2 -u 3 -o 1000000
30
27
31
28
# run_lefse.py performs the actual statistica analysis
32
29
#
@@ -35,33 +32,33 @@ lefse-format_input.py hmp_aerobiosis_small.txt hmp_aerobiosis_small.in -c 1 -s 2
35
32
# can be listed using the -h option
36
33
run_lefse.py hmp_aerobiosis_small.in hmp_aerobiosis_small.res
37
34
38
- # lefse-plot_res .py visualizes the output
35
+ # lefse_plot_res .py visualizes the output
39
36
#
40
37
# Plot the list of biomarkers with their effect size
41
38
# Severak graphical options are available for personalizing the output
42
- lefse-plot_res .py hmp_aerobiosis_small.res hmp_aerobiosis_small.png
39
+ lefse_plot_res .py hmp_aerobiosis_small.res hmp_aerobiosis_small.png
43
40
44
- # plot_cladogram .py visualizes the output on a hierarchical tree
41
+ # lefse_plot_cladogram .py visualizes the output on a hierarchical tree
45
42
#
46
43
# Plot the representation of the biomarkers on the hierarchical tree
47
44
# specified in the input data (using | in the name of the features)
48
45
# In this case we will obtain the RDP taxonomy.
49
46
# This is an early implementation of the module. I'm working on an improved version
50
47
# that will be released independently from LEfSe
51
- lefse-plot_cladogram .py hmp_aerobiosis_small.res hmp_aerobiosis_small.cladogram.png --format png
48
+ lefse_plot_cladogram .py hmp_aerobiosis_small.res hmp_aerobiosis_small.cladogram.png --format png
52
49
53
50
# Create a directory for storing the raw-data representation of the discovered biomarkers
54
51
mkdir biomarkers_raw_images
55
52
56
- # lefse-plot_features .py visualizes the raw-data features
53
+ # lefse_plot_features .py visualizes the raw-data features
57
54
#
58
55
# The module for exporting the raw-data representation of the features.
59
56
# With the default options we will obtain the images for all the features that are
60
57
# detected as biomarkers
61
- lefse-plot_features .py hmp_aerobiosis_small.in hmp_aerobiosis_small.res biomarkers_raw_images/
58
+ lefse_plot_features .py hmp_aerobiosis_small.in hmp_aerobiosis_small.res biomarkers_raw_images/
62
59
63
60
# # Turn lefse back off
64
- source deactivate lefse
61
+ conda deactivate lefse
65
62
66
63
# # bonus: seasonal greetings
67
64
# echo '~ Oíche Shamhna féile dhuit!'
0 commit comments