You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/OrdinaryDiffEqRosenbrock/src/generic_rosenbrock.jl
+16-16Lines changed: 16 additions & 16 deletions
Original file line number
Diff line number
Diff line change
@@ -911,7 +911,7 @@ function ROS2Tableau() # 2nd order
911
911
RosenbrockAdaptiveTableau(a,C,b,btilde,gamma,d,c)
912
912
end
913
913
914
-
@docrosenbrock_wanner_docstring(
914
+
@docrosenbrock_wolfbrandt_docstring(
915
915
"""
916
916
An Order 2/3 L-Stable Rosenbrock-W method which is good for very stiff equations with oscillations at low tolerances. 2nd order stiff-aware interpolation.
917
917
""",
@@ -922,7 +922,7 @@ Scientific Computing, 18 (1), pp. 1-22.
922
922
""",
923
923
with_step_limiter =true) Rosenbrock23
924
924
925
-
@docrosenbrock_wanner_docstring(
925
+
@docrosenbrock_wolfbrandt_docstring(
926
926
"""
927
927
An Order 3/2 A-Stable Rosenbrock-W method which is good for mildly stiff equations without oscillations at low tolerances. Note that this method is prone to instability in the presence of oscillations, so use with caution. 2nd order stiff-aware interpolation.
928
928
""",
@@ -944,7 +944,7 @@ references = """
944
944
""",
945
945
with_step_limiter =true) ROS3P
946
946
947
-
@docrosenbrock_wanner_docstring(
947
+
@docrosenbrock_wolfbrandt_docstring(
948
948
"""
949
949
An Order 2/3 L-Stable Rosenbrock-W method for stiff ODEs and DAEs in mass matrix form. 2nd order stiff-aware interpolation and additional error test for interpolation.
950
950
""",
@@ -955,7 +955,7 @@ references = """
955
955
""",
956
956
with_step_limiter =true) Rodas23W
957
957
958
-
@docrosenbrock_wanner_docstring(
958
+
@docrosenbrock_wolfbrandt_docstring(
959
959
"""
960
960
A 4th order L-stable Rosenbrock-W method.
961
961
""",
@@ -971,7 +971,7 @@ references = """
971
971
publisher={Springer}}
972
972
""") ROS34PW1a
973
973
974
-
@docrosenbrock_wanner_docstring(
974
+
@docrosenbrock_wolfbrandt_docstring(
975
975
"""
976
976
A 4th order L-stable Rosenbrock-W method.
977
977
""",
@@ -987,7 +987,7 @@ references = """
987
987
publisher={Springer}}
988
988
""") ROS34PW1b
989
989
990
-
@docrosenbrock_wanner_docstring(
990
+
@docrosenbrock_wolfbrandt_docstring(
991
991
"""
992
992
A 4th order stiffy accurate Rosenbrock-W method for PDAEs.
993
993
""",
@@ -1003,7 +1003,7 @@ references = """
1003
1003
publisher={Springer}}
1004
1004
""") ROS34PW2
1005
1005
1006
-
@docrosenbrock_wanner_docstring(
1006
+
@docrosenbrock_wolfbrandt_docstring(
1007
1007
"""
1008
1008
A 4th order strongly A-stable (Rinf~0.63) Rosenbrock-W method.
1009
1009
""",
@@ -1088,7 +1088,7 @@ references = """
1088
1088
""",
1089
1089
with_step_limiter=true) Rodas42
1090
1090
1091
-
@docrosenbrock_wanner_docstring(
1091
+
@docrosenbrock_docstring(
1092
1092
"""
1093
1093
4th order A-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant. 4th order
1094
1094
on linear parabolic problems and 3rd order accurate on nonlinear parabolic problems (as opposed to
@@ -1102,7 +1102,7 @@ references = """
1102
1102
""",
1103
1103
with_step_limiter=true) Rodas4P
1104
1104
1105
-
@docrosenbrock_wanner_docstring(
1105
+
@docrosenbrock_wolfbrandt_docstring(
1106
1106
"""
1107
1107
A 4th order L-stable stiffly stable Rosenbrock method with a stiff-aware 3rd order interpolant. 4th order
1108
1108
on linear parabolic problems and 3rd order accurate on nonlinear parabolic problems. It is an improvement
@@ -1128,7 +1128,7 @@ references = """
1128
1128
""",
1129
1129
with_step_limiter=true) Rodas5
1130
1130
1131
-
@docrosenbrock_docstring(
1131
+
@docrosenbrock_wolfbrandt_docstring(
1132
1132
"""
1133
1133
A 5th order A-stable stiffly stable Rosenbrock method with a stiff-aware 4th order interpolant.
1134
1134
Has improved stability in the adaptive time stepping embedding.
@@ -1141,7 +1141,7 @@ references = """
1141
1141
""",
1142
1142
with_step_limiter=true) Rodas5P
1143
1143
1144
-
@docrosenbrock_docstring(
1144
+
@docrosenbrock_wolfbrandt_docstring(
1145
1145
"""
1146
1146
A 5th order A-stable stiffly stable Rosenbrock method with a stiff-aware 4th order interpolant.
1147
1147
Has improved stability in the adaptive time stepping embedding.
@@ -1154,7 +1154,7 @@ references = """
1154
1154
""",
1155
1155
with_step_limiter=true) Rodas5Pr
1156
1156
1157
-
@docrosenbrock_docstring(
1157
+
@docrosenbrock_wolfbrandt_docstring(
1158
1158
"""
1159
1159
A 5th order A-stable stiffly stable Rosenbrock method with a stiff-aware 4th order interpolant.
1160
1160
Has improved stability in the adaptive time stepping embedding.
@@ -1200,7 +1200,7 @@ references = """
1200
1200
""",
1201
1201
with_step_limiter=true) Veldd4
1202
1202
1203
-
@docrosenbrock_docstring(
1203
+
@docrosenbrock_wolfbrandt_docstring(
1204
1204
"""
1205
1205
A 4th order A-stable Rosenbrock method.
1206
1206
""",
@@ -1324,7 +1324,7 @@ function ROS2STableau() # 2nd order
1324
1324
RosenbrockAdaptiveTableau(a,C,b,btilde,gamma,d,c)
1325
1325
end
1326
1326
1327
-
@docrosenbrock_wanner_docstring(
1327
+
@docrosenbrock_wolfbrandt_docstring(
1328
1328
"""
1329
1329
2nd order stiffly accurate Rosenbrock-Wanner W-method with 3 internal stages with B_PR consistent of order 2 with (Rinf=0).
1330
1330
""",
@@ -1619,7 +1619,7 @@ function ROS34PRwTableau() # 3rd order
1619
1619
RosenbrockAdaptiveTableau(a,C,b,btilde,gamma,d,c)
1620
1620
end
1621
1621
1622
-
@docrosenbrock_wanner_docstring(
1622
+
@docrosenbrock_wolfbrandt_docstring(
1623
1623
"""
1624
1624
3rd order stiffly accurate Rosenbrock-Wanner W-method with 4 internal stages,
1625
1625
B_PR consistent of order 2.
@@ -1736,7 +1736,7 @@ function ROK4aTableau() # 4rd order
1736
1736
RosenbrockAdaptiveTableau(a,C,b,btilde,gamma,d,c)
1737
1737
end
1738
1738
1739
-
@docrosenbrock_wanner_docstring(
1739
+
@docrosenbrock_wolfbrandt_docstring(
1740
1740
"""
1741
1741
4rd order L-stable Rosenbrock-Krylov method with 4 internal stages,
1742
1742
with a 3rd order embedded method which is strongly A-stable with Rinf~=0.55. (when using exact Jacobians)
0 commit comments