Skip to content

Commit 8676f72

Browse files
committed
fix typo
1 parent 5516f89 commit 8676f72

File tree

4 files changed

+5
-5
lines changed

4 files changed

+5
-5
lines changed

docs/src/getting_started.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ The simplest copy-pasteable code using a quasi-Newton method (LBFGS) to solve th
1414

1515
```@example intro
1616
# Import the package and define the problem to optimize
17-
using OptimizationLBFGS, Zygote
17+
using OptimizationLBFGSB, Zygote
1818
rosenbrock(u, p) = (p[1] - u[1])^2 + p[2] * (u[2] - u[1]^2)^2
1919
u0 = zeros(2)
2020
p = [1.0, 100.0]

docs/src/optimization_packages/optimization.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ There are some solvers that are available in the Optimization.jl package directl
55
## Methods
66

77
- `LBFGS`: The popular quasi-Newton method that leverages limited memory BFGS approximation of the inverse of the Hessian. Through a wrapper over the [L-BFGS-B](https://users.iems.northwestern.edu/%7Enocedal/lbfgsb.html) fortran routine accessed from the [LBFGSB.jl](https://github.com/Gnimuc/LBFGSB.jl/) package. It directly supports box-constraints.
8-
8+
99
This can also handle arbitrary non-linear constraints through a Augmented Lagrangian method with bounds constraints described in 17.4 of Numerical Optimization by Nocedal and Wright. Thus serving as a general-purpose nonlinear optimization solver available directly in Optimization.jl.
1010

1111
```@docs
@@ -18,7 +18,7 @@ Optimization.Sophia
1818

1919
```@example L-BFGS
2020
21-
using Optimization, OptimizationLBFGS, Zygote
21+
using Optimization, OptimizationLBFGSB, Zygote
2222
2323
rosenbrock(x, p) = (p[1] - x[1])^2 + p[2] * (x[2] - x[1]^2)^2
2424
x0 = zeros(2)

docs/src/tutorials/certification.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ This works with the `structural_analysis` keyword argument to `OptimizationProbl
77
We'll use a simple example to illustrate the convexity structure certification process.
88

99
```@example symanalysis
10-
using SymbolicAnalysis, Zygote, LinearAlgebra, Optimization, OptimizationLBFGS
10+
using SymbolicAnalysis, Zygote, LinearAlgebra, Optimization, OptimizationLBFGSB
1111
1212
function f(x, p = nothing)
1313
return exp(x[1]) + x[1]^2

docs/src/tutorials/remakecomposition.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,7 @@ The SciML interface provides a `remake` function which allows you to recreate th
1111
Let's look at a 10 dimensional schwefel function in the hypercube $x_i \in [-500, 500]$.
1212

1313
```@example polyalg
14-
using OptimizationLBFGS, Random
14+
using OptimizationLBFGSB, Random
1515
using OptimizationBBO, ReverseDiff
1616
1717
Random.seed!(122333)

0 commit comments

Comments
 (0)