Skip to content

Commit 8f9a432

Browse files
authored
Merge pull request #375 from SciML/ap/format
Run Formatter
2 parents 9e46f00 + 8d0578a commit 8f9a432

30 files changed

+235
-135
lines changed

docs/make.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
using Documenter, DocumenterCitations
22
using NonlinearSolve,
3-
SimpleNonlinearSolve, Sundials, SteadyStateDiffEq, SciMLBase, DiffEqBase
3+
SimpleNonlinearSolve, Sundials, SteadyStateDiffEq, SciMLBase, DiffEqBase
44

55
cp(joinpath(@__DIR__, "Manifest.toml"), joinpath(@__DIR__, "src/assets/Manifest.toml"),
66
force = true)

docs/pages.jl

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -43,5 +43,5 @@ pages = [
4343
"devdocs/operators.md",
4444
"devdocs/algorithm_helpers.md"],
4545
"Release Notes" => "release_notes.md",
46-
"References" => "references.md",
46+
"References" => "references.md"
4747
]

docs/src/basics/faq.md

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -15,15 +15,19 @@ myfun(x, lv) = x * sin(x) - lv
1515
1616
function f(out, levels, u0)
1717
for i in 1:N
18-
out[i] = solve(IntervalNonlinearProblem{false}(IntervalNonlinearFunction{false}(myfun),
19-
u0, levels[i]), Falsi()).u
18+
out[i] = solve(
19+
IntervalNonlinearProblem{false}(IntervalNonlinearFunction{false}(myfun),
20+
u0, levels[i]),
21+
Falsi()).u
2022
end
2123
end
2224
2325
function f2(out, levels, u0)
2426
for i in 1:N
25-
out[i] = solve(NonlinearProblem{false}(NonlinearFunction{false}(myfun),
26-
u0, levels[i]), SimpleNewtonRaphson()).u
27+
out[i] = solve(
28+
NonlinearProblem{false}(NonlinearFunction{false}(myfun),
29+
u0, levels[i]),
30+
SimpleNewtonRaphson()).u
2731
end
2832
end
2933

docs/src/basics/sparsity_detection.md

Lines changed: 6 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,10 +22,12 @@ NonlinearSolve will automatically perform matrix coloring and use sparse differe
2222
Now you can help the solver further by providing the color vector. This can be done by
2323

2424
```julia
25-
prob = NonlinearProblem(NonlinearFunction(nlfunc; sparsity = jac_prototype,
25+
prob = NonlinearProblem(
26+
NonlinearFunction(nlfunc; sparsity = jac_prototype,
2627
colorvec = colorvec), x0)
2728
# OR
28-
prob = NonlinearProblem(NonlinearFunction(nlfunc; jac_prototype = jac_prototype,
29+
prob = NonlinearProblem(
30+
NonlinearFunction(nlfunc; jac_prototype = jac_prototype,
2931
colorvec = colorvec), x0)
3032
```
3133

@@ -47,7 +49,8 @@ algorithm you want to use, then you can create your problem as follows:
4749
prob = NonlinearProblem(NonlinearFunction(nlfunc; sparsity = SymbolicsSparsityDetection()),
4850
x0) # Remember to have Symbolics.jl loaded
4951
# OR
50-
prob = NonlinearProblem(NonlinearFunction(nlfunc; sparsity = ApproximateJacobianSparsity()),
52+
prob = NonlinearProblem(
53+
NonlinearFunction(nlfunc; sparsity = ApproximateJacobianSparsity()),
5154
x0)
5255
```
5356

docs/src/tutorials/large_systems.md

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -308,10 +308,14 @@ for the exact sparsity detection case, we left out the time it takes to perform
308308
sparsity detection. Let's compare the two by setting the sparsity detection algorithms.
309309

310310
```@example ill_conditioned_nlprob
311-
prob_brusselator_2d_exact = NonlinearProblem(NonlinearFunction(brusselator_2d_loop;
312-
sparsity = SymbolicsSparsityDetection()), u0, p; abstol = 1e-10, reltol = 1e-10)
313-
prob_brusselator_2d_approx = NonlinearProblem(NonlinearFunction(brusselator_2d_loop;
314-
sparsity = ApproximateJacobianSparsity()), u0, p; abstol = 1e-10, reltol = 1e-10)
311+
prob_brusselator_2d_exact = NonlinearProblem(
312+
NonlinearFunction(brusselator_2d_loop;
313+
sparsity = SymbolicsSparsityDetection()),
314+
u0, p; abstol = 1e-10, reltol = 1e-10)
315+
prob_brusselator_2d_approx = NonlinearProblem(
316+
NonlinearFunction(brusselator_2d_loop;
317+
sparsity = ApproximateJacobianSparsity()),
318+
u0, p; abstol = 1e-10, reltol = 1e-10)
315319
316320
@btime solve(prob_brusselator_2d_exact, NewtonRaphson());
317321
@btime solve(prob_brusselator_2d_approx, NewtonRaphson());

docs/src/tutorials/modelingtoolkit.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,8 +22,8 @@ u0 = [x => 1.0,
2222
z => 0.0]
2323
2424
ps = [σ => 10.0
25-
ρ => 26.0
26-
β => 8 / 3]
25+
ρ => 26.0
26+
β => 8 / 3]
2727
2828
prob = NonlinearProblem(ns, u0, ps)
2929
sol = solve(prob, NewtonRaphson())
@@ -65,7 +65,7 @@ eqs = [
6565
0 ~ u2 - cos(u1),
6666
0 ~ u3 - hypot(u1, u2),
6767
0 ~ u4 - hypot(u2, u3),
68-
0 ~ u5 - hypot(u4, u1),
68+
0 ~ u5 - hypot(u4, u1)
6969
]
7070
@named sys = NonlinearSystem(eqs, [u1, u2, u3, u4, u5], [])
7171
```

ext/NonlinearSolveMINPACKExt.jl

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,8 @@ using MINPACK, NonlinearSolve, SciMLBase
44
import FastClosures: @closure
55

66
function SciMLBase.__solve(prob::Union{NonlinearLeastSquaresProblem,
7-
NonlinearProblem}, alg::CMINPACK, args...; abstol = nothing, maxiters = 1000,
7+
NonlinearProblem},
8+
alg::CMINPACK, args...; abstol = nothing, maxiters = 1000,
89
alias_u0::Bool = false, show_trace::Val{ShT} = Val(false),
910
store_trace::Val{StT} = Val(false), termination_condition = nothing,
1011
kwargs...) where {ShT, StT}

src/NonlinearSolve.jl

Lines changed: 28 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -9,21 +9,22 @@ import PrecompileTools: @recompile_invalidations, @compile_workload, @setup_work
99

1010
@recompile_invalidations begin
1111
using ADTypes, ConcreteStructs, DiffEqBase, FastBroadcast, FastClosures, LazyArrays,
12-
LineSearches, LinearAlgebra, LinearSolve, MaybeInplace, Preferences, Printf,
13-
SciMLBase, SimpleNonlinearSolve, SparseArrays, SparseDiffTools
12+
LineSearches, LinearAlgebra, LinearSolve, MaybeInplace, Preferences, Printf,
13+
SciMLBase, SimpleNonlinearSolve, SparseArrays, SparseDiffTools
1414

1515
import ArrayInterface: undefmatrix, can_setindex, restructure, fast_scalar_indexing
1616
import DiffEqBase: AbstractNonlinearTerminationMode,
17-
AbstractSafeNonlinearTerminationMode, AbstractSafeBestNonlinearTerminationMode,
18-
NonlinearSafeTerminationReturnCode, get_termination_mode
17+
AbstractSafeNonlinearTerminationMode,
18+
AbstractSafeBestNonlinearTerminationMode,
19+
NonlinearSafeTerminationReturnCode, get_termination_mode
1920
import FiniteDiff
2021
import ForwardDiff
2122
import ForwardDiff: Dual
2223
import LinearSolve: ComposePreconditioner, InvPreconditioner, needs_concrete_A
2324
import RecursiveArrayTools: recursivecopy!, recursivefill!
2425

2526
import SciMLBase: AbstractNonlinearAlgorithm, JacobianWrapper, AbstractNonlinearProblem,
26-
AbstractSciMLOperator, NLStats, _unwrap_val, has_jac, isinplace
27+
AbstractSciMLOperator, NLStats, _unwrap_val, has_jac, isinplace
2728
import SparseDiffTools: AbstractSparsityDetection, AutoSparseEnzyme
2829
import StaticArraysCore: StaticArray, SVector, SArray, MArray, Size, SMatrix, MMatrix
2930
end
@@ -95,20 +96,28 @@ include("default.jl")
9596
probs_nlls = NonlinearLeastSquaresProblem[]
9697
nlfuncs = ((NonlinearFunction{false}((u, p) -> (u .^ 2 .- p)[1:1]), [0.1, 0.0]),
9798
(NonlinearFunction{false}((u, p) -> vcat(u .* u .- p, u .* u .- p)), [0.1, 0.1]),
98-
(NonlinearFunction{true}((du, u, p) -> du[1] = u[1] * u[1] - p,
99-
resid_prototype = zeros(1)), [0.1, 0.0]),
100-
(NonlinearFunction{true}((du, u, p) -> du .= vcat(u .* u .- p, u .* u .- p),
101-
resid_prototype = zeros(4)), [0.1, 0.1]))
99+
(
100+
NonlinearFunction{true}((du, u, p) -> du[1] = u[1] * u[1] - p,
101+
resid_prototype = zeros(1)),
102+
[0.1, 0.0]),
103+
(
104+
NonlinearFunction{true}((du, u, p) -> du .= vcat(u .* u .- p, u .* u .- p),
105+
resid_prototype = zeros(4)),
106+
[0.1, 0.1]))
102107
for (fn, u0) in nlfuncs
103108
push!(probs_nlls, NonlinearLeastSquaresProblem(fn, u0, 2.0))
104109
end
105110
nlfuncs = ((NonlinearFunction{false}((u, p) -> (u .^ 2 .- p)[1:1]), Float32[0.1, 0.0]),
106111
(NonlinearFunction{false}((u, p) -> vcat(u .* u .- p, u .* u .- p)),
107112
Float32[0.1, 0.1]),
108-
(NonlinearFunction{true}((du, u, p) -> du[1] = u[1] * u[1] - p,
109-
resid_prototype = zeros(Float32, 1)), Float32[0.1, 0.0]),
110-
(NonlinearFunction{true}((du, u, p) -> du .= vcat(u .* u .- p, u .* u .- p),
111-
resid_prototype = zeros(Float32, 4)), Float32[0.1, 0.1]))
113+
(
114+
NonlinearFunction{true}((du, u, p) -> du[1] = u[1] * u[1] - p,
115+
resid_prototype = zeros(Float32, 1)),
116+
Float32[0.1, 0.0]),
117+
(
118+
NonlinearFunction{true}((du, u, p) -> du .= vcat(u .* u .- p, u .* u .- p),
119+
resid_prototype = zeros(Float32, 4)),
120+
Float32[0.1, 0.1]))
112121
for (fn, u0) in nlfuncs
113122
push!(probs_nlls, NonlinearLeastSquaresProblem(fn, u0, 2.0f0))
114123
end
@@ -132,18 +141,18 @@ end
132141
export NewtonRaphson, PseudoTransient, Klement, Broyden, LimitedMemoryBroyden, DFSane
133142
export GaussNewton, LevenbergMarquardt, TrustRegion
134143
export NonlinearSolvePolyAlgorithm,
135-
RobustMultiNewton, FastShortcutNonlinearPolyalg, FastShortcutNLLSPolyalg
144+
RobustMultiNewton, FastShortcutNonlinearPolyalg, FastShortcutNLLSPolyalg
136145

137146
# Extension Algorithms
138147
export LeastSquaresOptimJL, FastLevenbergMarquardtJL, CMINPACK, NLsolveJL,
139-
FixedPointAccelerationJL, SpeedMappingJL, SIAMFANLEquationsJL
148+
FixedPointAccelerationJL, SpeedMappingJL, SIAMFANLEquationsJL
140149

141150
# Advanced Algorithms -- Without Bells and Whistles
142151
export GeneralizedFirstOrderAlgorithm, ApproximateJacobianSolveAlgorithm, GeneralizedDFSane
143152

144153
# Descent Algorithms
145154
export NewtonDescent, SteepestDescent, Dogleg, DampedNewtonDescent,
146-
GeodesicAcceleration
155+
GeodesicAcceleration
147156

148157
# Globalization
149158
## Line Search Algorithms
@@ -153,9 +162,9 @@ export RadiusUpdateSchemes
153162

154163
# Export the termination conditions from DiffEqBase
155164
export SteadyStateDiffEqTerminationMode, SimpleNonlinearSolveTerminationMode,
156-
NormTerminationMode, RelTerminationMode, RelNormTerminationMode, AbsTerminationMode,
157-
AbsNormTerminationMode, RelSafeTerminationMode, AbsSafeTerminationMode,
158-
RelSafeBestTerminationMode, AbsSafeBestTerminationMode
165+
NormTerminationMode, RelTerminationMode, RelNormTerminationMode, AbsTerminationMode,
166+
AbsNormTerminationMode, RelSafeTerminationMode, AbsSafeTerminationMode,
167+
RelSafeBestTerminationMode, AbsSafeBestTerminationMode
159168

160169
# Tracing Functionality
161170
export TraceAll, TraceMinimal, TraceWithJacobianConditionNumber

src/abstract_types.jl

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,8 @@ squares solver.
1616
### `__internal_init` specification
1717
1818
```julia
19-
__internal_init(prob::NonlinearProblem{uType, iip}, alg::AbstractDescentAlgorithm, J, fu, u;
19+
__internal_init(
20+
prob::NonlinearProblem{uType, iip}, alg::AbstractDescentAlgorithm, J, fu, u;
2021
pre_inverted::Val{INV} = Val(false), linsolve_kwargs = (;), abstol = nothing,
2122
reltol = nothing, alias_J::Bool = true, shared::Val{N} = Val(1),
2223
kwargs...) where {INV, N, uType, iip} --> AbstractDescentCache
@@ -232,7 +233,8 @@ Abstract Type for Damping Functions in DampedNewton.
232233
### `__internal_init` specification
233234
234235
```julia
235-
__internal_init(prob::AbstractNonlinearProblem, f::AbstractDampingFunction, initial_damping,
236+
__internal_init(
237+
prob::AbstractNonlinearProblem, f::AbstractDampingFunction, initial_damping,
236238
J, fu, u, args...; internal_norm = DEFAULT_NORM,
237239
kwargs...) --> AbstractDampingFunctionCache
238240
```

src/algorithms/broyden.jl

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,8 @@ search.
2828
useful for specific problems, but whether it will work may depend strongly on the
2929
problem
3030
"""
31-
function Broyden(; max_resets = 100, linesearch = NoLineSearch(), reset_tolerance = nothing,
31+
function Broyden(;
32+
max_resets = 100, linesearch = NoLineSearch(), reset_tolerance = nothing,
3233
init_jacobian::Val{IJ} = Val(:identity), autodiff = nothing, alpha = nothing,
3334
update_rule::Val{UR} = Val(:good_broyden)) where {IJ, UR}
3435
if IJ === :identity

0 commit comments

Comments
 (0)