|
1 | 1 | # Modelling Equilibrium Models with Reduced State Size
|
2 | 2 |
|
3 |
| -This Tutorial is currently under preparation. Check back soon. |
| 3 | +Sometimes we want don't want to solve a root finding problem with the full state size. This |
| 4 | +will often be faster, since the size of the root finding problem is reduced. We will use the |
| 5 | +same MNIST example as before, but this time we will use a reduced state size. |
| 6 | + |
| 7 | +```@example reduced_dim_mnist |
| 8 | +using DeepEquilibriumNetworks, SciMLSensitivity, Lux, NonlinearSolve, OrdinaryDiffEq, |
| 9 | + Statistics, Random, Optimisers, LuxCUDA, Zygote, LinearSolve |
| 10 | +using MLDatasets: MNIST |
| 11 | +using MLDataUtils: LabelEnc, convertlabel, stratifiedobs, batchview |
| 12 | +
|
| 13 | +CUDA.allowscalar(false) |
| 14 | +ENV["DATADEPS_ALWAYS_ACCEPT"] = true |
| 15 | +
|
| 16 | +const cdev = cpu_device() |
| 17 | +const gdev = gpu_device() |
| 18 | +
|
| 19 | +function onehot(labels_raw) |
| 20 | + return convertlabel(LabelEnc.OneOfK, labels_raw, LabelEnc.NativeLabels(collect(0:9))) |
| 21 | +end |
| 22 | +
|
| 23 | +function loadmnist(batchsize, split) |
| 24 | + # Load MNIST |
| 25 | + mnist = MNIST(; split) |
| 26 | + imgs, labels_raw = mnist.features, mnist.targets |
| 27 | + # Process images into (H,W,C,BS) batches |
| 28 | + x_train = Float32.(reshape(imgs, size(imgs, 1), size(imgs, 2), 1, size(imgs, 3))) |> |
| 29 | + gdev |
| 30 | + x_train = batchview(x_train, batchsize) |
| 31 | + # Onehot and batch the labels |
| 32 | + y_train = onehot(labels_raw) |> gdev |
| 33 | + y_train = batchview(y_train, batchsize) |
| 34 | + return x_train, y_train |
| 35 | +end |
| 36 | +
|
| 37 | +x_train, y_train = loadmnist(128, :train); |
| 38 | +x_test, y_test = loadmnist(128, :test); |
| 39 | +``` |
| 40 | + |
| 41 | +Now we will define the construct model function. Here we will use Dense Layers and |
| 42 | +downsample the features using the `init` kwarg. |
| 43 | + |
| 44 | +```@example reduced_dim_mnist |
| 45 | +function construct_model(solver; model_type::Symbol=:regdeq) |
| 46 | + down = Chain(FlattenLayer(), Dense(784 => 512, gelu)) |
| 47 | +
|
| 48 | + # The input layer of the DEQ |
| 49 | + deq_model = Chain(Parallel(+, |
| 50 | + Dense(128 => 64, tanh), # Reduced dim of `128` |
| 51 | + Dense(512 => 64, tanh)), # Original dim of `512` |
| 52 | + Dense(64 => 64, tanh), Dense(64 => 128)) # Return the reduced dim of `128` |
| 53 | +
|
| 54 | + if model_type === :skipdeq |
| 55 | + init = Dense(512 => 128, tanh) |
| 56 | + elseif model_type === :regdeq |
| 57 | + error(":regdeq is not supported for reduced dim models") |
| 58 | + else |
| 59 | + # This should preferably done via `ChainRulesCore.@ignore_derivatives`. But here |
| 60 | + # we are only using Zygote so this is fine. |
| 61 | + init = WrappedFunction(x -> Zygote.@ignore(fill!(similar(x, 128, size(x, 2)), |
| 62 | + false))) |
| 63 | + end |
| 64 | +
|
| 65 | + deq = DeepEquilibriumNetwork(deq_model, solver; init, verbose=false, |
| 66 | + linsolve_kwargs=(; maxiters=10)) |
| 67 | +
|
| 68 | + classifier = Chain(Dense(128 => 128, gelu), Dense(128, 10)) |
| 69 | +
|
| 70 | + model = Chain(; down, deq, classifier) |
| 71 | +
|
| 72 | + # For NVIDIA GPUs this directly generates the parameters on the GPU |
| 73 | + rng = Random.default_rng() |> gdev |
| 74 | + ps, st = Lux.setup(rng, model) |
| 75 | +
|
| 76 | + # Warmup the forward and backward passes |
| 77 | + x = randn(rng, Float32, 28, 28, 1, 128) |
| 78 | + y = onehot(rand(Random.default_rng(), 0:9, 128)) |> gdev |
| 79 | +
|
| 80 | + model_ = Lux.Experimental.StatefulLuxLayer(model, ps, st) |
| 81 | + @info "warming up forward pass" |
| 82 | + logitcrossentropy(model_, x, ps, y) |
| 83 | + @info "warming up backward pass" |
| 84 | + Zygote.gradient(logitcrossentropy, model_, x, ps, y) |
| 85 | + @info "warmup complete" |
| 86 | +
|
| 87 | + return model, ps, st |
| 88 | +end |
| 89 | +``` |
| 90 | + |
| 91 | +Define some helper functions to train the model. |
| 92 | + |
| 93 | +```@example reduced_dim_mnist |
| 94 | +logitcrossentropy(ŷ, y) = mean(-sum(y .* logsoftmax(ŷ; dims=1); dims=1)) |
| 95 | +function logitcrossentropy(model, x, ps, y) |
| 96 | + l1 = logitcrossentropy(model(x, ps), y) |
| 97 | + # Add in some regularization |
| 98 | + l2 = mean(abs2, model.st.deq.solution.z_star .- model.st.deq.solution.u0) |
| 99 | + return l1 + 0.1f0 * l2 |
| 100 | +end |
| 101 | +
|
| 102 | +classify(x) = argmax.(eachcol(x)) |
| 103 | +
|
| 104 | +function accuracy(model, data, ps, st) |
| 105 | + total_correct, total = 0, 0 |
| 106 | + st = Lux.testmode(st) |
| 107 | + model = Lux.Experimental.StatefulLuxLayer(model, ps, st) |
| 108 | + for (x, y) in data |
| 109 | + target_class = classify(cdev(y)) |
| 110 | + predicted_class = classify(cdev(model(x))) |
| 111 | + total_correct += sum(target_class .== predicted_class) |
| 112 | + total += length(target_class) |
| 113 | + end |
| 114 | + return total_correct / total |
| 115 | +end |
| 116 | +
|
| 117 | +function train_model(solver, model_type; data_train=zip(x_train, y_train), |
| 118 | + data_test=zip(x_test, y_test)) |
| 119 | + model, ps, st = construct_model(solver; model_type) |
| 120 | + model_st = Lux.Experimental.StatefulLuxLayer(model, nothing, st) |
| 121 | +
|
| 122 | + @info "Training Model: $(model_type) with Solver: $(nameof(typeof(solver)))" |
| 123 | +
|
| 124 | + opt_st = Optimisers.setup(Adam(0.001), ps) |
| 125 | +
|
| 126 | + acc = accuracy(model, data_test, ps, st) * 100 |
| 127 | + @info "Starting Accuracy: $(acc)" |
| 128 | +
|
| 129 | + @info "Pretrain with unrolling to a depth of 5" |
| 130 | + st = Lux.update_state(st, :fixed_depth, Val(5)) |
| 131 | + model_st = Lux.Experimental.StatefulLuxLayer(model, ps, st) |
| 132 | +
|
| 133 | + for (i, (x, y)) in enumerate(data_train) |
| 134 | + res = Zygote.withgradient(logitcrossentropy, model_st, x, ps, y) |
| 135 | + Optimisers.update!(opt_st, ps, res.grad[3]) |
| 136 | + if i % 50 == 1 |
| 137 | + @info "Pretraining Batch: [$(i)/$(length(data_train))] Loss: $(res.val)" |
| 138 | + end |
| 139 | + end |
| 140 | +
|
| 141 | + acc = accuracy(model, data_test, ps, model_st.st) * 100 |
| 142 | + @info "Pretraining complete. Accuracy: $(acc)" |
| 143 | +
|
| 144 | + st = Lux.update_state(st, :fixed_depth, Val(0)) |
| 145 | + model_st = Lux.Experimental.StatefulLuxLayer(model, ps, st) |
| 146 | +
|
| 147 | + for epoch in 1:3 |
| 148 | + for (i, (x, y)) in enumerate(data_train) |
| 149 | + res = Zygote.withgradient(logitcrossentropy, model_st, x, ps, y) |
| 150 | + Optimisers.update!(opt_st, ps, res.grad[3]) |
| 151 | + if i % 50 == 1 |
| 152 | + @info "Epoch: [$(epoch)/3] Batch: [$(i)/$(length(data_train))] Loss: $(res.val)" |
| 153 | + end |
| 154 | + end |
| 155 | +
|
| 156 | + acc = accuracy(model, data_test, ps, model_st.st) * 100 |
| 157 | + @info "Epoch: [$(epoch)/3] Accuracy: $(acc)" |
| 158 | + end |
| 159 | +
|
| 160 | + @info "Training complete." |
| 161 | + println() |
| 162 | +
|
| 163 | + return model, ps, st |
| 164 | +end |
| 165 | +``` |
| 166 | + |
| 167 | +Now we can train our model. We can't use `:regdeq` here currently, but we will support this |
| 168 | +in the future. |
| 169 | + |
| 170 | +```@example reduced_dim_mnist |
| 171 | +train_model(NewtonRaphson(; linsolve=KrylovJL_GMRES()), :skipdeq) |
| 172 | +nothing # hide |
| 173 | +``` |
| 174 | + |
| 175 | +```@example reduced_dim_mnist |
| 176 | +train_model(NewtonRaphson(; linsolve=KrylovJL_GMRES()), :deq) |
| 177 | +nothing # hide |
| 178 | +``` |
0 commit comments