You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
KVM: x86: pull kvm->srcu read-side to kvm_arch_vcpu_ioctl_run
kvm_arch_vcpu_ioctl_run is already doing srcu_read_lock/unlock in two
places, namely vcpu_run and post_kvm_run_save, and a third is actually
needed around the call to vcpu->arch.complete_userspace_io to avoid
the following splat:
WARNING: suspicious RCU usage
arch/x86/kvm/pmu.c:190 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
1 lock held by CPU 28/KVM/370841:
#0: ff11004089f280b8 (&vcpu->mutex){+.+.}-{3:3}, at: kvm_vcpu_ioctl+0x87/0x730 [kvm]
Call Trace:
<TASK>
dump_stack_lvl+0x59/0x73
reprogram_fixed_counter+0x15d/0x1a0 [kvm]
kvm_pmu_trigger_event+0x1a3/0x260 [kvm]
? free_moved_vector+0x1b4/0x1e0
complete_fast_pio_in+0x8a/0xd0 [kvm]
This splat is not at all unexpected, since complete_userspace_io callbacks
can execute similar code to vmexits. For example, SVM with nrips=false
will call into the emulator from svm_skip_emulated_instruction().
While it's tempting to never acquire kvm->srcu for an uninitialized vCPU,
practically speaking there's no penalty to acquiring kvm->srcu "early"
as the KVM_MP_STATE_UNINITIALIZED path is a one-time thing per vCPU. On
the other hand, seemingly innocuous helpers like kvm_apic_accept_events()
and sync_regs() can theoretically reach code that might access
SRCU-protected data structures, e.g. sync_regs() can trigger forced
existing of nested mode via kvm_vcpu_ioctl_x86_set_vcpu_events().
Reported-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
0 commit comments