|
| 1 | +@testset "Trajectories" begin |
| 2 | +n,m,N = 5,3,11 |
| 3 | +dt = 0.1 |
| 4 | +x = @SVector rand(n) |
| 5 | +u = @SVector rand(m) |
| 6 | +z = KnotPoint(x,u,dt) |
| 7 | + |
| 8 | +#--- Empty contructor |
| 9 | +Z = Traj(n,m,dt,N) |
| 10 | +@test all(isnan, state(Z[rand(1:N)])) |
| 11 | +@test control(Z[rand(1:N-1)]) == zeros(m) |
| 12 | +@test length(controls(Z)) == N-1 |
| 13 | +@test length(states(Z)) == N |
| 14 | +@test eltype(states(Z)) <: SVector{n} |
| 15 | +@test eltype(controls(Z)) <: SVector{m} |
| 16 | +@test Z[1].dt ≈ dt |
| 17 | +@test Z[end].dt ≈ 0 |
| 18 | +@test Z[1].t ≈ 0 |
| 19 | +@test Z[N].t ≈ (N-1)*dt |
| 20 | +@test TO.is_terminal(Z[end]) == true |
| 21 | + |
| 22 | +Z = Traj(n,m,dt,N, equal=true) |
| 23 | +@test all(isnan, state(Z[rand(1:N)])) |
| 24 | +@test control(Z[rand(1:N)]) == zeros(m) |
| 25 | +@test length(controls(Z)) == N |
| 26 | +@test length(states(Z)) == N |
| 27 | +@test eltype(states(Z)) <: SVector{n} |
| 28 | +@test eltype(controls(Z)) <: SVector{m} |
| 29 | +@test Z[1].dt ≈ dt |
| 30 | +@test Z[end].dt ≈ dt |
| 31 | +@test Z[1].t ≈ 0 |
| 32 | +@test Z[N].t ≈ (N-1)*dt |
| 33 | +@test TO.is_terminal(Z[end]) == false |
| 34 | + |
| 35 | +#--- Copy single constructor |
| 36 | +Z = Traj(x, u, dt, N) |
| 37 | +@test length(Z) == N |
| 38 | +@test eltype(Z) <: KnotPoint{Float64,n,m} |
| 39 | +@test state(Z[1]) == x |
| 40 | +Z[1].z = 2*Z[1].z |
| 41 | +@test state(Z[1]) ≈ 2x |
| 42 | +@test state(Z[2]) ≈ x |
| 43 | +@test control(Z[1]) ≈ 2u |
| 44 | +@test control(Z[2]) ≈ u |
| 45 | +@test Z[1].dt ≈ dt |
| 46 | +@test Z[end].dt ≈ 0 |
| 47 | +@test Z[1].t ≈ 0 |
| 48 | +@test Z[N].t ≈ (N-1)*dt |
| 49 | + |
| 50 | +#--- Vector constructor |
| 51 | +X = [@SVector rand(n) for k = 1:N] |
| 52 | +U = [@SVector rand(m) for k = 1:N-1] |
| 53 | +Z = Traj(X,U,fill(dt,N)) |
| 54 | +@test states(Z) ≈ X |
| 55 | +@test controls(Z) ≈ U |
| 56 | +@test TO.get_times(Z) ≈ range(0, length=N, step=dt) |
| 57 | + |
| 58 | +Z2 = copy(Z) |
| 59 | +RobotDynamics.set_state!(Z[1], x) |
| 60 | +@test !(state(Z[1]) ≈ state(Z2[1])) |
| 61 | +@test state(Z[2]) ≈ state(Z2[2]) |
| 62 | +X = 2 .* X |
| 63 | +U = 3 .* U |
| 64 | +X[1] = x |
| 65 | +TO.set_states!(Z2, X) |
| 66 | +@test state(Z[1]) ≈ state(Z2[1]) |
| 67 | +@test !(control(Z2[2]) ≈ U[2]) |
| 68 | +TO.set_controls!(Z2, U) |
| 69 | +@test control(Z2[2]) ≈ U[2] |
| 70 | + |
| 71 | +@test TO.is_terminal(Z[end]) == true |
| 72 | +push!(U, 2*U[end]) |
| 73 | +Z = Traj(X,U,fill(dt,N)) |
| 74 | +@test length(controls(Z)) == N |
| 75 | +@test TO.is_terminal(Z[end]) == false |
| 76 | + |
| 77 | +#--- Test copyto! |
| 78 | +Z0 = [KnotPoint(3*X[k], 2*U[k], dt, dt*(k-1)) for k = 1:N] |
| 79 | +@test state.(Z0) ≈ 3 .* states(Z) |
| 80 | +@test control.(Z0) ≈ 2 .* controls(Z) |
| 81 | +copyto!(Z0, Z) |
| 82 | +@test state.(Z0) ≈ states(Z) |
| 83 | +@test control.(Z0) ≈ controls(Z) |
| 84 | + |
| 85 | +Z2 = Traj(rand() .* X, rand() .* U,fill(dt,N)) |
| 86 | +@test !(states(Z) ≈ states(Z2)) |
| 87 | +@test !(controls(Z) ≈ controls(Z2)) |
| 88 | +copyto!(Z2, Z) |
| 89 | +@test states(Z) ≈ states(Z2) |
| 90 | +@test controls(Z) ≈ controls(Z2) |
| 91 | + |
| 92 | +#--- Test functions on trajectories |
| 93 | +model = Cartpole() |
| 94 | +n,m = size(model) |
| 95 | +fVal = [@SVector zeros(n) for k = 1:N] |
| 96 | +X = [@SVector rand(n) for k = 1:N] |
| 97 | +U = [@SVector rand(m) for k = 1:N-1] |
| 98 | +Z = Traj(X,U,fill(dt,N)) |
| 99 | + |
| 100 | +# Test dynamics evaluation |
| 101 | +TO.discrete_dynamics!(RK3, fVal, model, Z) |
| 102 | +@test fVal[1] ≈ discrete_dynamics(RK3, model, X[1], U[1], 0.0, dt) |
| 103 | +dyn = TO.DynamicsConstraint{RK3}(model, N) |
| 104 | +conval = TO.ConVal(n,m, dyn, 1:N-1) |
| 105 | +TO.evaluate!(conval, Z) |
| 106 | +@test conval.vals ≈ fVal[1:N-1] .- X[2:N] |
| 107 | +@test !(conval.vals ≈ [zeros(n) for k = 1:N-1]) |
| 108 | + |
| 109 | +# Test rollout |
| 110 | +rollout!(model, Z, X[1]) |
| 111 | +TO.evaluate!(conval, Z) |
| 112 | +@test conval.vals ≈ [zeros(n) for k = 1:N-1] |
| 113 | +end |
0 commit comments