|
| 1 | +!> \brief \b LA_CONSTANTS is a module for the scaling constants for the compiled Fortran single and double precisions |
| 2 | +! |
| 3 | +! =========== DOCUMENTATION =========== |
| 4 | +! |
| 5 | +! Online html documentation available at |
| 6 | +! http://www.netlib.org/lapack/explore-html/ |
| 7 | +! |
| 8 | +! Authors: |
| 9 | +! ======== |
| 10 | +! |
| 11 | +!> \author Edward Anderson, Lockheed Martin |
| 12 | +! |
| 13 | +!> \date May 2016 |
| 14 | +! |
| 15 | +!> \ingroup OTHERauxiliary |
| 16 | +! |
| 17 | +!> \par Contributors: |
| 18 | +! ================== |
| 19 | +!> |
| 20 | +!> Weslley Pereira, University of Colorado Denver, USA |
| 21 | +!> Nick Papior, Technical University of Denmark, DK |
| 22 | +! |
| 23 | +!> \par Further Details: |
| 24 | +! ===================== |
| 25 | +!> |
| 26 | +!> \verbatim |
| 27 | +!> |
| 28 | +!> Anderson E. (2017) |
| 29 | +!> Algorithm 978: Safe Scaling in the Level 1 BLAS |
| 30 | +!> ACM Trans Math Softw 44:1--28 |
| 31 | +!> https://doi.org/10.1145/3061665 |
| 32 | +!> |
| 33 | +!> Blue, James L. (1978) |
| 34 | +!> A Portable Fortran Program to Find the Euclidean Norm of a Vector |
| 35 | +!> ACM Trans Math Softw 4:15--23 |
| 36 | +!> https://doi.org/10.1145/355769.355771 |
| 37 | +!> |
| 38 | +!> \endverbatim |
| 39 | +! |
| 40 | +module LA_CONSTANTS |
| 41 | +! -- LAPACK auxiliary module (version 3.10.0) -- |
| 42 | +! -- LAPACK is a software package provided by Univ. of Tennessee, -- |
| 43 | +! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
| 44 | +! February 2021 |
| 45 | + |
| 46 | +! Standard constants for |
| 47 | + integer, parameter :: sp = kind(1.e0) |
| 48 | + |
| 49 | + real(sp), parameter :: szero = 0.0_sp |
| 50 | + real(sp), parameter :: shalf = 0.5_sp |
| 51 | + real(sp), parameter :: sone = 1.0_sp |
| 52 | + real(sp), parameter :: stwo = 2.0_sp |
| 53 | + real(sp), parameter :: sthree = 3.0_sp |
| 54 | + real(sp), parameter :: sfour = 4.0_sp |
| 55 | + real(sp), parameter :: seight = 8.0_sp |
| 56 | + real(sp), parameter :: sten = 10.0_sp |
| 57 | + complex(sp), parameter :: czero = ( 0.0_sp, 0.0_sp ) |
| 58 | + complex(sp), parameter :: chalf = ( 0.5_sp, 0.0_sp ) |
| 59 | + complex(sp), parameter :: cone = ( 1.0_sp, 0.0_sp ) |
| 60 | + character*1, parameter :: sprefix = 'S' |
| 61 | + character*1, parameter :: cprefix = 'C' |
| 62 | + |
| 63 | +! Scaling constants |
| 64 | + real(sp), parameter :: sulp = epsilon(0._sp) |
| 65 | + real(sp), parameter :: seps = sulp * 0.5_sp |
| 66 | + real(sp), parameter :: ssafmin = real(radix(0._sp),sp)**max( & |
| 67 | + minexponent(0._sp)-1, & |
| 68 | + 1-maxexponent(0._sp) & |
| 69 | + ) |
| 70 | + real(sp), parameter :: ssafmax = sone / ssafmin |
| 71 | + real(sp), parameter :: ssmlnum = ssafmin / sulp |
| 72 | + real(sp), parameter :: sbignum = ssafmax * sulp |
| 73 | + real(sp), parameter :: srtmin = sqrt(ssmlnum) |
| 74 | + real(sp), parameter :: srtmax = sqrt(sbignum) |
| 75 | + |
| 76 | +! Blue's scaling constants |
| 77 | + real(sp), parameter :: stsml = real(radix(0._sp), sp)**ceiling( & |
| 78 | + (minexponent(0._sp) - 1) * 0.5_sp) |
| 79 | + real(sp), parameter :: stbig = real(radix(0._sp), sp)**floor( & |
| 80 | + (maxexponent(0._sp) - digits(0._sp) + 1) * 0.5_sp) |
| 81 | +! ssml = 1/s, where s was defined in https://doi.org/10.1145/355769.355771 |
| 82 | + real(sp), parameter :: sssml = real(radix(0._sp), sp)**( - floor( & |
| 83 | + (minexponent(0._sp) - 1) * 0.5_sp)) |
| 84 | +! ssml = 1/S, where S was defined in https://doi.org/10.1145/355769.355771 |
| 85 | + real(sp), parameter :: ssbig = real(radix(0._sp), sp)**( - ceiling( & |
| 86 | + (maxexponent(0._sp) - digits(0._sp) + 1) * 0.5_sp)) |
| 87 | + |
| 88 | +! Standard constants for |
| 89 | + integer, parameter :: dp = kind(1.d0) |
| 90 | + |
| 91 | + real(dp), parameter :: dzero = 0.0_dp |
| 92 | + real(dp), parameter :: dhalf = 0.5_dp |
| 93 | + real(dp), parameter :: done = 1.0_dp |
| 94 | + real(dp), parameter :: dtwo = 2.0_dp |
| 95 | + real(dp), parameter :: dthree = 3.0_dp |
| 96 | + real(dp), parameter :: dfour = 4.0_dp |
| 97 | + real(dp), parameter :: deight = 8.0_dp |
| 98 | + real(dp), parameter :: dten = 10.0_dp |
| 99 | + complex(dp), parameter :: zzero = ( 0.0_dp, 0.0_dp ) |
| 100 | + complex(dp), parameter :: zhalf = ( 0.5_dp, 0.0_dp ) |
| 101 | + complex(dp), parameter :: zone = ( 1.0_dp, 0.0_dp ) |
| 102 | + character*1, parameter :: dprefix = 'D' |
| 103 | + character*1, parameter :: zprefix = 'Z' |
| 104 | + |
| 105 | +! Scaling constants |
| 106 | + real(dp), parameter :: dulp = epsilon(0._dp) |
| 107 | + real(dp), parameter :: deps = dulp * 0.5_dp |
| 108 | + real(dp), parameter :: dsafmin = real(radix(0._dp),dp)**max( & |
| 109 | + minexponent(0._dp)-1, & |
| 110 | + 1-maxexponent(0._dp) & |
| 111 | + ) |
| 112 | + real(dp), parameter :: dsafmax = done / dsafmin |
| 113 | + real(dp), parameter :: dsmlnum = dsafmin / dulp |
| 114 | + real(dp), parameter :: dbignum = dsafmax * dulp |
| 115 | + real(dp), parameter :: drtmin = sqrt(dsmlnum) |
| 116 | + real(dp), parameter :: drtmax = sqrt(dbignum) |
| 117 | + |
| 118 | +! Blue's scaling constants |
| 119 | + real(dp), parameter :: dtsml = real(radix(0._dp), dp)**ceiling( & |
| 120 | + (minexponent(0._dp) - 1) * 0.5_dp) |
| 121 | + real(dp), parameter :: dtbig = real(radix(0._dp), dp)**floor( & |
| 122 | + (maxexponent(0._dp) - digits(0._dp) + 1) * 0.5_dp) |
| 123 | +! ssml = 1/s, where s was defined in https://doi.org/10.1145/355769.355771 |
| 124 | + real(dp), parameter :: dssml = real(radix(0._dp), dp)**( - floor( & |
| 125 | + (minexponent(0._dp) - 1) * 0.5_dp)) |
| 126 | +! ssml = 1/S, where S was defined in https://doi.org/10.1145/355769.355771 |
| 127 | + real(dp), parameter :: dsbig = real(radix(0._dp), dp)**( - ceiling( & |
| 128 | + (maxexponent(0._dp) - digits(0._dp) + 1) * 0.5_dp)) |
| 129 | + |
| 130 | +end module LA_CONSTANTS |
0 commit comments