|
| 1 | +*> \brief \b DLARF1F applies an elementary reflector to a general rectangular matrix. |
| 2 | +* |
| 3 | +* =========== DOCUMENTATION =========== |
| 4 | +* |
| 5 | +* Online html documentation available at |
| 6 | +* http://www.netlib.org/lapack/explore-html/ |
| 7 | +* |
| 8 | +*> \htmlonly |
| 9 | +*> Download DLARF + dependencies |
| 10 | +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarf.f"> |
| 11 | +*> [TGZ]</a> |
| 12 | +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarf.f"> |
| 13 | +*> [ZIP]</a> |
| 14 | +*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarf.f"> |
| 15 | +*> [TXT]</a> |
| 16 | +*> \endhtmlonly |
| 17 | +* |
| 18 | +* Definition: |
| 19 | +* =========== |
| 20 | +* |
| 21 | +* SUBROUTINE DLARF1F( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) |
| 22 | +* |
| 23 | +* .. Scalar Arguments .. |
| 24 | +* CHARACTER SIDE |
| 25 | +* INTEGER INCV, LDC, M, N |
| 26 | +* DOUBLE PRECISION TAU |
| 27 | +* .. |
| 28 | +* .. Array Arguments .. |
| 29 | +* DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * ) |
| 30 | +* .. |
| 31 | +* |
| 32 | +* |
| 33 | +*> \par Purpose: |
| 34 | +* ============= |
| 35 | +*> |
| 36 | +*> \verbatim |
| 37 | +*> |
| 38 | +*> DLARF1F applies a real elementary reflector H to a real m by n matrix |
| 39 | +*> C, from either the left or the right. H is represented in the form |
| 40 | +*> |
| 41 | +*> H = I - tau * v * v**T |
| 42 | +*> |
| 43 | +*> where tau is a real scalar and v is a real vector. |
| 44 | +*> It is assumed that v(1) = 1. v(1) is not referenced. |
| 45 | +*> |
| 46 | +*> If tau = 0, then H is taken to be the unit matrix. |
| 47 | +*> \endverbatim |
| 48 | +* |
| 49 | +* Arguments: |
| 50 | +* ========== |
| 51 | +* |
| 52 | +*> \param[in] SIDE |
| 53 | +*> \verbatim |
| 54 | +*> SIDE is CHARACTER*1 |
| 55 | +*> = 'L': form H * C |
| 56 | +*> = 'R': form C * H |
| 57 | +*> \endverbatim |
| 58 | +*> |
| 59 | +*> \param[in] M |
| 60 | +*> \verbatim |
| 61 | +*> M is INTEGER |
| 62 | +*> The number of rows of the matrix C. |
| 63 | +*> \endverbatim |
| 64 | +*> |
| 65 | +*> \param[in] N |
| 66 | +*> \verbatim |
| 67 | +*> N is INTEGER |
| 68 | +*> The number of columns of the matrix C. |
| 69 | +*> \endverbatim |
| 70 | +*> |
| 71 | +*> \param[in] V |
| 72 | +*> \verbatim |
| 73 | +*> V is DOUBLE PRECISION array, dimension |
| 74 | +*> (1 + (M-1)*abs(INCV)) if SIDE = 'L' |
| 75 | +*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R' |
| 76 | +*> The vector v in the representation of H. V is not used if |
| 77 | +*> TAU = 0. |
| 78 | +*> \endverbatim |
| 79 | +*> |
| 80 | +*> \param[in] INCV |
| 81 | +*> \verbatim |
| 82 | +*> INCV is INTEGER |
| 83 | +*> The increment between elements of v. INCV <> 0. |
| 84 | +*> \endverbatim |
| 85 | +*> |
| 86 | +*> \param[in] TAU |
| 87 | +*> \verbatim |
| 88 | +*> TAU is DOUBLE PRECISION |
| 89 | +*> The value tau in the representation of H. |
| 90 | +*> \endverbatim |
| 91 | +*> |
| 92 | +*> \param[in,out] C |
| 93 | +*> \verbatim |
| 94 | +*> C is DOUBLE PRECISION array, dimension (LDC,N) |
| 95 | +*> On entry, the m by n matrix C. |
| 96 | +*> On exit, C is overwritten by the matrix H * C if SIDE = 'L', |
| 97 | +*> or C * H if SIDE = 'R'. |
| 98 | +*> \endverbatim |
| 99 | +*> |
| 100 | +*> \param[in] LDC |
| 101 | +*> \verbatim |
| 102 | +*> LDC is INTEGER |
| 103 | +*> The leading dimension of the array C. LDC >= max(1,M). |
| 104 | +*> \endverbatim |
| 105 | +*> |
| 106 | +*> \param[out] WORK |
| 107 | +*> \verbatim |
| 108 | +*> WORK is DOUBLE PRECISION array, dimension |
| 109 | +*> (N) if SIDE = 'L' |
| 110 | +*> or (M) if SIDE = 'R' |
| 111 | +*> \endverbatim |
| 112 | +* |
| 113 | +* Authors: |
| 114 | +* ======== |
| 115 | +* |
| 116 | +*> \author Univ. of Tennessee |
| 117 | +*> \author Univ. of California Berkeley |
| 118 | +*> \author Univ. of Colorado Denver |
| 119 | +*> \author NAG Ltd. |
| 120 | +* |
| 121 | +*> \ingroup larf1f |
| 122 | +* |
| 123 | +*> \par Further Details: |
| 124 | +* ===================== |
| 125 | +*> |
| 126 | +*> \verbatim |
| 127 | +*> |
| 128 | +*> The algorithm update matrix C by blocks. |
| 129 | +*> C is presected in the form of 4 blocks: |
| 130 | +*> C11 - 1-by-1, C12 - 1-by-n, C21 - m-by-1 and C22 - (m-1)-by-(n-1) |
| 131 | +*> |
| 132 | +*> C = ( C11 | C12 ) |
| 133 | +*> (_____|___________________) |
| 134 | +*> ( | ) |
| 135 | +*> ( | ) |
| 136 | +*> ( C21 | C22 ) |
| 137 | +*> ( | ) |
| 138 | +*> ( | ) |
| 139 | +*> |
| 140 | +*> \endverbatim |
| 141 | +* |
| 142 | +* ===================================================================== |
| 143 | + SUBROUTINE DLARF1F( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) |
| 144 | +* |
| 145 | +* -- LAPACK auxiliary routine -- |
| 146 | +* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
| 147 | +* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
| 148 | +* |
| 149 | +* .. Scalar Arguments .. |
| 150 | + CHARACTER SIDE |
| 151 | + INTEGER INCV, LDC, M, N |
| 152 | + DOUBLE PRECISION TAU |
| 153 | +* .. |
| 154 | +* .. Array Arguments .. |
| 155 | + DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * ) |
| 156 | +* .. |
| 157 | +* |
| 158 | +* ===================================================================== |
| 159 | +* |
| 160 | +* .. Parameters .. |
| 161 | + DOUBLE PRECISION ONE, ZERO |
| 162 | + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) |
| 163 | +* .. |
| 164 | +* .. Local Scalars .. |
| 165 | + LOGICAL APPLYLEFT |
| 166 | + INTEGER I, LASTV, LASTC |
| 167 | + DOUBLE PRECISION C11, DOT1, DDOT |
| 168 | +* .. |
| 169 | +* .. External Subroutines .. |
| 170 | + EXTERNAL DGEMV, DGER, DDOT, DAXPY, DCOPY |
| 171 | +* .. |
| 172 | +* .. External Functions .. |
| 173 | + LOGICAL LSAME |
| 174 | + INTEGER ILADLR, ILADLC |
| 175 | + EXTERNAL LSAME, ILADLR, ILADLC |
| 176 | +* .. |
| 177 | +* .. Executable Statements .. |
| 178 | +* |
| 179 | + APPLYLEFT = LSAME( SIDE, 'L' ) |
| 180 | + LASTV = 0 |
| 181 | + LASTC = 0 |
| 182 | + IF( TAU.NE.ZERO ) THEN |
| 183 | +! Set up variables for scanning V. LASTV begins pointing to the end |
| 184 | +! of V. |
| 185 | + IF( APPLYLEFT ) THEN |
| 186 | + LASTV = M |
| 187 | + ELSE |
| 188 | + LASTV = N |
| 189 | + END IF |
| 190 | + IF( INCV.GT.0 ) THEN |
| 191 | + I = 1 + (LASTV-1) * INCV |
| 192 | + ELSE |
| 193 | + I = 1 |
| 194 | + END IF |
| 195 | +! Look for the last non-zero row in V. |
| 196 | + DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) |
| 197 | + LASTV = LASTV - 1 |
| 198 | + I = I - INCV |
| 199 | + END DO |
| 200 | + IF( APPLYLEFT ) THEN |
| 201 | +! Scan for the last non-zero column in C(1:lastv,:). |
| 202 | + LASTC = ILADLC(LASTV, N, C, LDC) |
| 203 | + ELSE |
| 204 | +! Scan for the last non-zero row in C(:,1:lastv). |
| 205 | + LASTC = ILADLR(M, LASTV, C, LDC) |
| 206 | + END IF |
| 207 | + END IF |
| 208 | + |
| 209 | + IF( LASTC.EQ.0 ) THEN |
| 210 | + RETURN |
| 211 | + END IF |
| 212 | + |
| 213 | + IF( APPLYLEFT ) THEN |
| 214 | +* |
| 215 | +* Form H * C |
| 216 | +* |
| 217 | + IF( LASTV.GT.0 ) THEN |
| 218 | + DOT1 = - TAU * DDOT( LASTV - 1, V( 1 + INCV ), INCV, |
| 219 | + $ C( 2, 1 ), 1 ) |
| 220 | + |
| 221 | + C11 = (ONE - TAU) * C( 1, 1 ) + DOT1 |
| 222 | +* |
| 223 | +* Prepare WORK |
| 224 | +* |
| 225 | + CALL DCOPY( LASTC - 1, C( 1, 2 ), LDC, WORK, 1 ) |
| 226 | + |
| 227 | + CALL DGEMV( 'Transpose', LASTV - 1, LASTC - 1, -TAU, |
| 228 | + $ C( 2, 2 ), LDC, V( 1 + INCV ), INCV, -TAU, WORK, 1 ) |
| 229 | +* |
| 230 | +* Update C12 |
| 231 | +* |
| 232 | + CALL DAXPY( LASTC - 1, ONE, WORK, 1, C( 1, 2 ), LDC ) |
| 233 | +* |
| 234 | +* Update C21 |
| 235 | +* |
| 236 | + CALL DAXPY( LASTV - 1, -TAU * C( 1, 1 ) + DOT1, |
| 237 | + $ V( 1 + INCV ), INCV, C( 2, 1 ), 1 ) |
| 238 | +* |
| 239 | +* Update C11 |
| 240 | +* |
| 241 | + C( 1, 1 ) = C11 |
| 242 | +* |
| 243 | +* Update C22 |
| 244 | +* |
| 245 | + CALL DGER( LASTV - 1, LASTC - 1, ONE, V( 1 + INCV ), |
| 246 | + $ INCV, WORK, 1, C( 2, 2 ), LDC ) |
| 247 | + END IF |
| 248 | + ELSE |
| 249 | +* |
| 250 | +* Form C * H |
| 251 | +* |
| 252 | + IF( LASTV.GT.0 ) THEN |
| 253 | + DOT1 = - TAU * DDOT( LASTV - 1, V( 1 + INCV ), INCV, |
| 254 | + $ C( 1, 2 ), LDC ) |
| 255 | + |
| 256 | + C11 = (ONE - TAU) * C( 1, 1 ) + DOT1 |
| 257 | +* |
| 258 | +* Prepare WORK |
| 259 | +* |
| 260 | + CALL DCOPY( LASTC - 1, C( 2, 1 ), 1, WORK, 1 ) |
| 261 | + |
| 262 | + CALL DGEMV( 'No transpose', LASTC - 1, LASTV - 1, -TAU, |
| 263 | + $ C( 2, 2 ), LDC, V( 1 + INCV ), INCV, -TAU, WORK, 1 ) |
| 264 | +* |
| 265 | +* Update C12 |
| 266 | +* |
| 267 | + CALL DAXPY( LASTV - 1, -TAU * C( 1, 1 ) + DOT1, |
| 268 | + $ V( 1 + INCV ), INCV, C( 1, 2 ), LDC ) |
| 269 | +* |
| 270 | +* Update C11 |
| 271 | +* |
| 272 | + C( 1, 1 ) = C11 |
| 273 | +* |
| 274 | +* Update C21 |
| 275 | +* |
| 276 | + CALL DAXPY( LASTC - 1, ONE, WORK, 1, C( 2, 1 ), 1 ) |
| 277 | +* |
| 278 | +* Update C22 |
| 279 | +* |
| 280 | + CALL DGER( LASTC - 1, LASTV - 1, ONE, WORK, 1, |
| 281 | + $ V( 1 + INCV ), INCV, C( 2, 2 ), LDC ) |
| 282 | + END IF |
| 283 | + END IF |
| 284 | + RETURN |
| 285 | +* |
| 286 | +* End of DLARF1F |
| 287 | +* |
| 288 | + END |
0 commit comments