Skip to content

Commit 37fd0bc

Browse files
author
Mark Gates
committed
gesvdq: spacing and consistency
1 parent 8db1e0a commit 37fd0bc

File tree

4 files changed

+73
-73
lines changed

4 files changed

+73
-73
lines changed

SRC/cgesvdq.f

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@
7979
* JOBU is CHARACTER*1
8080
* = 'A' All M left singular vectors are computed and returned in the
8181
* matrix U. See the description of U.
82-
* = 'S' or 'U' N=min(M,N) left singular vectors are computed and returned
82+
* = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
8383
* in the matrix U. See the description of U.
8484
* = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
8585
* vectors are computed and returned in the matrix U.
@@ -96,7 +96,7 @@
9696
* the matrix V.
9797
* = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
9898
* vectors are computed and returned in the matrix V. This option is
99-
* allowed only if JOBU='R' or JOBU='N'; otherwise it is illegal.
99+
* allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
100100
* = 'N' The right singular vectors are not computed.
101101
*..............................................................................
102102
* M (input)
@@ -105,7 +105,7 @@
105105
*..............................................................................
106106
* N (input)
107107
* N is INTEGER
108-
* The number of columns of the input matrix A. M >= N>=0.
108+
* The number of columns of the input matrix A. M >= N >= 0.
109109
*..............................................................................
110110
* A (input/workspace/output)
111111
* A is COMPLEX array of dimensions LDA x N
@@ -128,7 +128,7 @@
128128
* LDU x M if JOBU = 'A'; see the description of LDU. In this case,
129129
* on exit, U contains the M left singular vectors.
130130
* LDU x N if JOBU = 'S', 'U', 'R' ; see the description of LDU. In this
131-
* case, U contains the leading N or the leading NUMRANK left singular vectors.
131+
* case, U contains the leading N or the leading NUMRANK left singular vectors.
132132
* LDU x N if JOBU = 'F' ; see the description of LDU. In this case U
133133
* contains N x N unitary matrix that can be used to form the left
134134
* singular vectors.
@@ -160,7 +160,7 @@
160160
* NUMRANK is INTEGER
161161
* NUMRANK is the numerical rank first determined after the rank
162162
* revealing QR factorization, following the strategy specified by the
163-
* value of JOBA. If JOBV='R' and JOBU='R', only NUMRANK
163+
* value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
164164
* leading singular values and vectors are then requested in the call
165165
* of CGESVD. The final value of NUMRANK might be further reduced if
166166
* some singular values are computed as zeros.
@@ -173,7 +173,7 @@
173173
* rank revealing QR factorization.
174174
* If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
175175
* of row swaps used in row pivoting. These can be used to restore the
176-
* left singular vectors in the case JOBU='F'.
176+
* left singular vectors in the case JOBU = 'F'.
177177
*..............................................................................
178178
* CWORK (workspace/output)
179179
* CWORK is COMPLEX array of size LCWORK, used as a workspace.
@@ -192,7 +192,7 @@
192192
* { MAX( M, 1 ), if JOBU = 'A'
193193
* LWSVD = MAX( 3*N, 1 )
194194
* LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 3*(N/2), 1 ), LWUNLQ = MAX( N, 1 ),
195-
* LWQRF = MAX(N/2,1), LWUNQ2 = MAX(N,1)
195+
* LWQRF = MAX( N/2, 1 ), LWUNQ2 = MAX( N, 1 )
196196
* Then the minimal value of LCWORK is:
197197
* = MAX( N + LWQP3, LWSVD ) if only the singular values are needed;
198198
* = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
@@ -206,30 +206,30 @@
206206
*
207207
* = N + MAX( LWQP3, LWSVD ) if the singular values and the right
208208
* singular vectors are requested;
209-
* = N + MAX( LWQP3, LWCON,LWSVD ) if the singular values and the right
209+
* = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
210210
* singular vectors are requested, and also
211211
* a scaled condition etimate requested;
212212
*
213-
* = N + MAX( LWQP3, LWSVD, LWUNQ ) if the full SVD is requested with JOBV='R';
213+
* = N + MAX( LWQP3, LWSVD, LWUNQ ) if the full SVD is requested with JOBV = 'R';
214214
* independent of JOBR;
215215
* = N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ) if the full SVD is requested,
216-
* JOBV='R' and, also a scaled condition
216+
* JOBV = 'R' and, also a scaled condition
217217
* estimate requested; independent of JOBR;
218218
* = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
219219
* N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ) ) if the
220-
* full SVD is requested with JOBV='A' or 'V', and
220+
* full SVD is requested with JOBV = 'A' or 'V', and
221221
* JOBR ='N'
222222
* = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
223223
* N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWUNQ ) )
224-
* if the full SVD is requested with JOBV='A' or 'V', and
224+
* if the full SVD is requested with JOBV = 'A' or 'V', and
225225
* JOBR ='N', and also a scaled condition number estimate
226226
* requested.
227227
* = MAX( N + MAX( LWQP3, LWSVD, LWUNQ ),
228228
* N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) ) if the
229-
* full SVD is requested with JOBV='A', 'V', and JOBR ='T'
229+
* full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
230230
* = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWUNQ ),
231231
* N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWUNQ2, LWUNQ ) )
232-
* if the full SVD is requested with JOBV='A', 'V' and
232+
* if the full SVD is requested with JOBV = 'A', 'V' and
233233
* JOBR ='T', and also a scaled condition number estimate
234234
* requested.
235235
* Finally, LCWORK must be at least two: LCWORK = MAX( 2, LCWORK ).
@@ -244,17 +244,17 @@
244244
* number of column scaled A. If A = C * D where D is diagonal and C
245245
* has unit columns in the Euclidean norm, then, assuming full column rank,
246246
* N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
247-
* Otherwise, RWORK(1)=-1.
247+
* Otherwise, RWORK(1) = -1.
248248
* 2. RWORK(2) contains the number of singular values computed as
249249
* exact zeros in CGESVD applied to the upper triangular or trapeziodal
250250
* R (from the initial QR factorization). In case of early exit (no call to
251-
* CGESVD, such as in the case of zero matrix) RWORK(2)=-1.
251+
* CGESVD, such as in the case of zero matrix) RWORK(2) = -1.
252252
*..............................................................................
253253
* LRWORK (input)
254254
* LRWORK is INTEGER.
255255
* The dimension of the array RWORK.
256-
* If JOBP ='P', then LRWORK >= MAX(2, M, 5*N).
257-
* Otherwise, LRWORK >= MAX(2,5*N)
256+
* If JOBP ='P', then LRWORK >= MAX(2, M, 5*N);
257+
* Otherwise, LRWORK >= MAX(2, 5*N).
258258
*..............................................................................
259259
* INFO
260260
* INFO is INTEGER

SRC/dgesvdq.f

Lines changed: 18 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@
1919
* INTEGER M, N, LDA, LDU, LDV, NUMRANK, LWORK, LRWORK, INFO
2020
* ..
2121
* .. Array Arguments ..
22-
* DOUBLE PRECISION A( LDA,* ), U( LDU,* ), V( LDV,* ), WORK( * )
22+
* DOUBLE PRECISION A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * )
2323
* REAL S( * ), RWORK( * )
2424
* INTEGER IWORK( * )
2525
*
@@ -79,7 +79,7 @@
7979
* JOBU is CHARACTER*1
8080
* = 'A' All M left singular vectors are computed and returned in the
8181
* matrix U. See the description of U.
82-
* = 'S' or 'U' N=min(M,N) left singular vectors are computed and returned
82+
* = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
8383
* in the matrix U. See the description of U.
8484
* = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
8585
* vectors are computed and returned in the matrix U.
@@ -96,7 +96,7 @@
9696
* the matrix V.
9797
* = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
9898
* vectors are computed and returned in the matrix V. This option is
99-
* allowed only if JOBU='R' or JOBU='N'; otherwise it is illegal.
99+
* allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
100100
* = 'N' The right singular vectors are not computed.
101101
*..............................................................................
102102
* M (input)
@@ -105,7 +105,7 @@
105105
*..............................................................................
106106
* N (input)
107107
* N is INTEGER
108-
* The number of columns of the input matrix A. M >= N>=0.
108+
* The number of columns of the input matrix A. M >= N >= 0.
109109
*..............................................................................
110110
* A (input/workspace/output)
111111
* A is REAL array of dimensions LDA x N
@@ -160,7 +160,7 @@
160160
* NUMRANK is INTEGER
161161
* NUMRANK is the numerical rank first determined after the rank
162162
* revealing QR factorization, following the strategy specified by the
163-
* value of JOBA. If JOBV='R' and JOBU='R', only NUMRANK
163+
* value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
164164
* leading singular values and vectors are then requested in the call
165165
* of DGESVD. The final value of NUMRANK might be further reduced if
166166
* some singular values are computed as zeros.
@@ -175,7 +175,7 @@
175175
* rank revealing QR factorization.
176176
* If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
177177
* of row swaps used in row pivoting. These can be used to restore the
178-
* left singular vectors in the case JOBU='F'.
178+
* left singular vectors in the case JOBU = 'F'.
179179
*..............................................................................
180180
* WORK (workspace/output)
181181
* WORK is REAL array of size LWORK, used as a workspace.
@@ -194,7 +194,7 @@
194194
* { MAX( M, 1 ), if JOBU = 'A'
195195
* LWSVD = MAX( 5*N, 1 )
196196
* LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 5*(N/2), 1 ), LWORLQ = MAX( N, 1 ),
197-
* LWQRF = MAX(N/2,1), LWORQ2 = MAX(N,1)
197+
* LWQRF = MAX( N/2, 1 ), LWORQ2 = MAX( N, 1 )
198198
* Then the minimal value of LWORK is:
199199
* = MAX( N + LWQP3, LWSVD ) if only the singular values are needed;
200200
* = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
@@ -208,30 +208,30 @@
208208
*
209209
* = N + MAX( LWQP3, LWSVD ) if the singular values and the right
210210
* singular vectors are requested;
211-
* = N + MAX( LWQP3, LWCON,LWSVD ) if the singular values and the right
211+
* = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
212212
* singular vectors are requested, and also
213213
* a scaled condition etimate requested;
214214
*
215-
* = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV='R';
216-
* independent of JOBR;
215+
* = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV = 'R';
216+
* independent of JOBR;
217217
* = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the full SVD is requested,
218-
* JOBV='R' and, also a scaled condition
218+
* JOBV = 'R' and, also a scaled condition
219219
* estimate requested; independent of JOBR;
220220
* = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
221221
* N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ) ) if the
222-
* full SVD is requested with JOBV='A' or 'V', and
222+
* full SVD is requested with JOBV = 'A' or 'V', and
223223
* JOBR ='N'
224224
* = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
225225
* N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWORLQ, LWORQ ) )
226-
* if the full SVD is requested with JOBV='A' or 'V', and
226+
* if the full SVD is requested with JOBV = 'A' or 'V', and
227227
* JOBR ='N', and also a scaled condition number estimate
228228
* requested.
229229
* = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
230230
* N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) ) if the
231-
* full SVD is requested with JOBV='A', 'V', and JOBR ='T'
231+
* full SVD is requested with JOBV = 'A', 'V', and JOBR ='T'
232232
* = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
233233
* N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) )
234-
* if the full SVD is requested with JOBV='A' or 'V', and
234+
* if the full SVD is requested with JOBV = 'A' or 'V', and
235235
* JOBR ='T', and also a scaled condition number estimate
236236
* requested.
237237
* Finally, LWORK must be at least two: LWORK = MAX( 2, LWORK ).
@@ -246,11 +246,11 @@
246246
* number of column scaled A. If A = C * D where D is diagonal and C
247247
* has unit columns in the Euclidean norm, then, assuming full column rank,
248248
* N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
249-
* Otherwise, RWORK(1)=-1.
249+
* Otherwise, RWORK(1) = -1.
250250
* 2. RWORK(2) contains the number of singular values computed as
251251
* exact zeros in DGESVD applied to the upper triangular or trapeziodal
252252
* R (from the initial QR factorization). In case of early exit (no call to
253-
* DGESVD, such as in the case of zero matrix) RWORK(2)=-1.
253+
* DGESVD, such as in the case of zero matrix) RWORK(2) = -1.
254254
*..............................................................................
255255
* LRWORK (input)
256256
* LRWORK is INTEGER.
@@ -306,7 +306,7 @@ SUBROUTINE DGESVDQ( JOBA, JOBP, JOBR, JOBU, JOBV, M, N, A, LDA,
306306
INTEGER M, N, LDA, LDU, LDV, NUMRANK, LWORK, LRWORK, INFO
307307
* ..
308308
* .. Array Arguments ..
309-
DOUBLE PRECISION A( LDA,* ), U( LDU,* ), V( LDV,* ), WORK( * )
309+
DOUBLE PRECISION A( LDA, * ), U( LDU, * ), V( LDV, * ), WORK( * )
310310
DOUBLE PRECISION S( * ), RWORK( * )
311311
INTEGER IWORK(*)
312312
*

SRC/sgesvdq.f

Lines changed: 16 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@
6969
* JOBR (input)
7070
* JOBR is CHARACTER*1
7171
* = 'T' After the initial pivoted QR factorization, SGESVD is applied to
72-
* the transposed R** of the computed triangular factor R. This involves
72+
* the transposed R**T of the computed triangular factor R. This involves
7373
* some extra data movement (matrix transpositions). Useful for
7474
* experiments, research and development.
7575
* = 'N' The triangular factor R is given as input to SGESVD. This may be
@@ -79,7 +79,7 @@
7979
* JOBU is CHARACTER*1
8080
* = 'A' All M left singular vectors are computed and returned in the
8181
* matrix U. See the description of U.
82-
* = 'S' or 'U' N=min(M,N) left singular vectors are computed and returned
82+
* = 'S' or 'U' N = min(M,N) left singular vectors are computed and returned
8383
* in the matrix U. See the description of U.
8484
* = 'R' Numerical rank NUMRANK is determined and only NUMRANK left singular
8585
* vectors are computed and returned in the matrix U.
@@ -96,7 +96,7 @@
9696
* the matrix V.
9797
* = 'R' Numerical rank NUMRANK is determined and only NUMRANK right singular
9898
* vectors are computed and returned in the matrix V. This option is
99-
* allowed only if JOBU='R' or JOBU='N'; otherwise it is illegal.
99+
* allowed only if JOBU = 'R' or JOBU = 'N'; otherwise it is illegal.
100100
* = 'N' The right singular vectors are not computed.
101101
*..............................................................................
102102
* M (input)
@@ -105,7 +105,7 @@
105105
*..............................................................................
106106
* N (input)
107107
* N is INTEGER
108-
* The number of columns of the input matrix A. M >= N>=0.
108+
* The number of columns of the input matrix A. M >= N >= 0.
109109
*..............................................................................
110110
* A (input/workspace/output)
111111
* A is REAL array of dimensions LDA x N
@@ -160,7 +160,7 @@
160160
* NUMRANK is INTEGER
161161
* NUMRANK is the numerical rank first determined after the rank
162162
* revealing QR factorization, following the strategy specified by the
163-
* value of JOBA. If JOBV='R' and JOBU='R', only NUMRANK
163+
* value of JOBA. If JOBV = 'R' and JOBU = 'R', only NUMRANK
164164
* leading singular values and vectors are then requested in the call
165165
* of SGESVD. The final value of NUMRANK might be further reduced if
166166
* some singular values are computed as zeros.
@@ -175,7 +175,7 @@
175175
* rank revealing QR factorization.
176176
* If JOBP = 'P', IWORK(N+1:N+M-1) contains the indices of the sequence
177177
* of row swaps used in row pivoting. These can be used to restore the
178-
* left singular vectors in the case JOBU='F'.
178+
* left singular vectors in the case JOBU = 'F'.
179179
*..............................................................................
180180
* WORK (workspace/output)
181181
* WORK is REAL array of size LWORK, used as a workspace.
@@ -194,7 +194,7 @@
194194
* { MAX( M, 1 ), if JOBU = 'A'
195195
* LWSVD = MAX( 5*N, 1 )
196196
* LWLQF = MAX( N/2, 1 ), LWSVD2 = MAX( 5*(N/2), 1 ), LWUNLQ = MAX( N, 1 ),
197-
* LWQRF = MAX(N/2,1), LWORQ2 = MAX(N,1)
197+
* LWQRF = MAX( N/2, 1 ), LWORQ2 = MAX( N, 1 )
198198
* Then the minimal value of LWORK is:
199199
* = MAX( N + LWQP3, LWSVD ) if only the singular values are needed;
200200
* = MAX( N + LWQP3, LWCON, LWSVD ) if only the singular values are needed,
@@ -208,30 +208,30 @@
208208
*
209209
* = N + MAX( LWQP3, LWSVD ) if the singular values and the right
210210
* singular vectors are requested;
211-
* = N + MAX( LWQP3, LWCON,LWSVD ) if the singular values and the right
211+
* = N + MAX( LWQP3, LWCON, LWSVD ) if the singular values and the right
212212
* singular vectors are requested, and also
213213
* a scaled condition etimate requested;
214214
*
215-
* = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV='R';
215+
* = N + MAX( LWQP3, LWSVD, LWORQ ) if the full SVD is requested with JOBV = 'R';
216216
* independent of JOBR;
217217
* = N + MAX( LWQP3, LWCON, LWSVD, LWORQ ) if the full SVD is requested,
218-
* JOBV='R' and, also a scaled condition
218+
* JOBV = 'R' and, also a scaled condition
219219
* estimate requested; independent of JOBR;
220220
* = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
221221
* N + MAX( LWQP3, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWORQ) ) if the
222-
* full SVD is requested with JOBV='A' or 'V', and
222+
* full SVD is requested with JOBV = 'A' or 'V', and
223223
* JOBR ='N'
224224
* = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
225225
* N + MAX( LWQP3, LWCON, N/2+LWLQF, N/2+LWSVD2, N/2+LWUNLQ, LWORQ ) )
226-
* if the full SVD is requested with JOBV='A' or 'V', and
226+
* if the full SVD is requested with JOBV = 'A' or 'V', and
227227
* JOBR ='N', and also a scaled condition number estimate
228228
* requested.
229229
* = MAX( N + MAX( LWQP3, LWSVD, LWORQ ),
230230
* N + MAX( LWQP3, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) ) if the
231-
* full SVD is requested with JOBV='A', and JOBR ='T'
231+
* full SVD is requested with JOBV = 'A', and JOBR ='T'
232232
* = MAX( N + MAX( LWQP3, LWCON, LWSVD, LWORQ ),
233233
* N + MAX( LWQP3, LWCON, N/2+LWQRF, N/2+LWSVD2, N/2+LWORQ2, LWORQ ) )
234-
* if the full SVD is requested with JOBV='A' or 'V', and
234+
* if the full SVD is requested with JOBV = 'A' or 'V', and
235235
* JOBR ='T', and also a scaled condition number estimate
236236
* requested.
237237
* Finally, LWORK must be at least two: LWORK = MAX( 2, LWORK ).
@@ -246,11 +246,11 @@
246246
* number of column scaled A. If A = C * D where D is diagonal and C
247247
* has unit columns in the Euclidean norm, then, assuming full column rank,
248248
* N^(-1/4) * RWORK(1) <= ||pinv(C)||_2 <= N^(1/4) * RWORK(1).
249-
* Otherwise, RWORK(1)=-1.
249+
* Otherwise, RWORK(1) = -1.
250250
* 2. RWORK(2) contains the number of singular values computed as
251251
* exact zeros in SGESVD applied to the upper triangular or trapeziodal
252252
* R (from the initial QR factorization). In case of early exit (no call to
253-
* SGESVD, such as in the case of zero matrix) RWORK(2)=-1.
253+
* SGESVD, such as in the case of zero matrix) RWORK(2) = -1.
254254
*..............................................................................
255255
* LRWORK (input)
256256
* LRWORK is INTEGER.

0 commit comments

Comments
 (0)